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Discussions on the stability of diquarks *
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Abstract: Since the birth of the quark model, the diquark, which is composed of two quarks, has been

considered as a substantial structure of a color anti-triplet. This is not only a mathematical simplification for

dealing with baryons, but also provides a physical picture where the diquark would behave as a whole object.

It is natural to ask whether such a structure is sufficiently stable against external disturbance. The mass

spectra of the ground states of the scalar and axial-vector diquarks, which are composed of two-light (L-L),

one-light-one-heavy (H-L) and two-heavy (H-H) quarks, respectively, have been calculated in terms of the QCD

sum rules. We suggest a criterion as the quantitative standard for the stability of the diquark. It is the gap

between the masses of the diquark and
√

s0 where s0 is the threshold of the excited states and continuity,

namely the larger the gap is, the more stable the diquark would be. In this work, we calculate the masses

of the H-H type to complete the series of the spectra of the ground state diquarks. However, as the criterion

being taken, we find that all the gaps for the various diquarks are within a small range. In particular, the gap

for the diquark with two heavy quarks, which is believed to be a stable structure, is slightly smaller than that

of the other two types of diquarks. Therefore we conclude that because of the large theoretical uncertainty,

we cannot use the numerical results obtained with the QCD sum rules to assess the stability of diquarks, but

need to invoke other theoretical framework.
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1 Introduction

Right after the birth of the quark model, the di-

quark model was proposed: two quarks constitute a

color-anti-triplet, which may be a tightly bound state.

In Gell-Mann’s pioneering paper on the quark model,

he discussed the possibility of the existence of free

diquarks [1]. With the diquark picture, numerous

authors have studied processes where baryons are in-

volved [2–6] and their conclusions support the exis-

tence of diquarks. Even in the meson sector, some

newly observed resonances are considered to possess

the exotic structures. One possibility is that the

mesons are tetraquarks composed of a diquark and

an anti-diquark, [7–11]. In fact, it is still in dispute

whether the diquark is a real spatially bound state

as a pseudo-particle or just a loosely bound state.

Recently, the authors of Refs. [12, 13] treated the di-

quark as an explicit particle, which is the essential

ingredient inside hadrons (baryons or exotic mesons).

If these diquarks indeed exist as stable particles, they

should have certain and definite masses and quan-

tum numbers. Just as we discuss the regular hadrons,

their spectra not only possess the real part, but also

the imaginary part which corresponds to the stability

of the diquark. Namely, the lifetime of the diquark

might be finite. The main scenario to determine the

diquark lifetime is that with an external disturbance,

the diquark might dissolve into two quarks. By our

intuition, the diquark composed of two light quarks

might be easier to dissolve by absorbing gluons. Gen-

erally, it is believed that the heavy diquarks which are

composed of two heavy quarks are more stable against

external disturbance.

In principle, a baryon composed of three va-

lence quarks is described by the Faddeev equation

group composed of three coupled differential equa-

tions [14, 15]. For the equations, the three valence
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quarks are of the same weights. It is possible that

two of the three quarks would accidentally consti-

tute a bound state, say, by quantum fluctuation.

The diquark can be treated as a sub-system and be-

haves as an independent particle. In this picture the

baryon possesses a diquark-quark structure and thus

the three-body system turns into a two-body one.

Correspondingly, the three Faddeev equations reduce

to a single equation (regardless of whether they are

relativistic or non-relativistic). Therefore, the prob-

lem is greatly simplified. It is noted on the other

side that the sub-system is not exactly a fundamen-

tal one, but possesses an inner structure. When it

interacts with gluons, a form factor which manifests

the inner structure should be introduced. Now, we

confront a problem: which two valence quarks of the

three would tend to combine into a bound state. In

fact, any two quarks have a chance to combine via

strong interactions, but the remaining valence quark

would tend to interact with the individual quarks in

the diquark and tear it apart. Thus the key point

is whether such a sub-system is sufficiently stable

against the disturbance. When we deal with baryons

composed of three light quarks, one-heavy-two-light

quarks, and two-heavy-one-light quarks, we notice

obvious unequal structures. We need to determine

which type of diquark, i.e. the diquarks with light-

light (L-L), heavy-light (H-L) or heavy-heavy (H-H)

structures, is more stable. Thus we can more confi-

dently reduce the three Faddeev equations to one with

the expected diquark subsystem. To meet this aim, it

is significant to investigate the stability of diquarks.

First of all, it is important and interesting to in-

vestigate the spectra of diquarks with various quark

contents. According to the masses of different fla-

vors, one can categorize the diquarks into three types:

light-light (L-L), heavy-light (H-L) and heavy-heavy

(H-H) diquarks, where light quarks are u, d, s and

heavy quarks are c, b.

The QCD is a successful theory for the strong

interaction, but the non-perturbative QCD which

dominates the low energy phenomena is still not yet

fully understood. Among the theoretical methods for

treating the non-perturbative QCD effects, the QCD

sum rules [16] are believed to be a powerful means

for evaluating the hadronic spectra and other proper-

ties of hadrons. In Refs. [10, 17], the mass spectra of

the scalar L-L diquark states were studied using the

QCD sum rules. Recently, with the same method,

Wang studied the H-L diquark states [18].

It then naturally follows that a diquark composed

of two heavy quarks (H-H) may be a kinematically fa-

vorable baryon sub-structure. For studying the sta-

bility of the three different types of diquarks (L-L,

H-L and H-H), it would be crucial to discuss their

properties in a unique framework. In this work, we

are going to carry out the task in terms of the QCD

sum rules. Then we will discuss the feasibility of such

a scheme by scanning the numerical results obtained

in this method.

Fig. 1. Dependence of M cc
A , Mbb

A , Mbc
S and Mbc

A on the Borel parameter M2
B. We deliberately use two vertical

lines to denote the chosen Borel window.
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In this paper, we calculate the masses of H-H

diquark states by using the QCD sum rules. Then

combining the results presented in the relevant works

[17, 18], we discuss the stability of the diquarks alto-

gether.

Obviously it is crucial to set a reasonable

and practical criterion of the stability of the sub-

structures − diquarks.

In the scenario of the QCD sum rules, numeri-

cally there exists a threshold s0 corresponding to a

starting point beyond which higher excited and con-

tinuous states reside. This cutoff provides a natural

criterion which we may use to study the stability of

the diquark. Namely, according to our general knowl-

edge on quantum mechanics, the continuous spectra

would correspond to the dissolved state where the

constituents of the supposed-bound state would be

set free. Thus we choose the gap between the ground

state and the corresponding threshold
√

s0 as the sta-

bility criterion of the diquarks.

However, as well known that there is a 20% the-

oretical uncertainty in all the computations via the

QCD sum rules, therefore, even though such a crite-

rion may be indeed reasonable in principle, it is still

doubtful if the results obtained in terms of the QCD

sum rules can practically apply to reflect the diquark

stability. The goal of this work is to testify the rea-

sonability of applying the supposed criterion within

the framework of the QCD sum rules.

In the last section, we will come back to discuss

the feasiability based on the numerical results we ob-

tained in term of the QCD sum rules.

The paper is organized as follows. After the intro-

duction, in Sec. 2 we derive the correlation function

of the suitable currents with proper quantum num-

bers in terms of the QCD sum rules. In Sec. 3, our

numerical results and relevant figures are presented.

Sec. 4 is devoted to a summary and concluding re-

marks. The tedious analytical results are collected in

the appendices.

2 Formalism

For studying the scalar and axial-vector H-H di-

quark with the QCD sum rules, we write down the

local color anti-triplet diquark currents:

J i(x) = εijkQT
j (x)Cγ5Qk(x), (1)

J i
µ(x) = εijkQT

j (x)CγµQk(x), (2)

where i, j,k are the color indexes, Q = b,c, and C is

the charge conjugation operator.

In order to perform the QCD sum rules, we define

the two-point correlation functions Π(q) (for scalar

diquark) and Πµν(q) (for axial-vector diquark) as fol-

lows:

Π(q) = i

∫
d4xeiq·x〈0|T

{

J i(x)J i†(0)
}

|0〉, (3)

Πµν(q) = i

∫
d4xeiq·x〈0|T

{

J i
µ(x)J i†

ν (0)
}

|0〉. (4)

On the hadron side, after separating out the

ground state contribution from the pole terms, the

correlation function is expressed as a dispersion inte-

gral over the physical regime,

Π(q) =
λ2

S

M 2
S −q2

+
1

π

∫∞

s0
S

ds
ρh

S(s)

s−q2
, (5)

Πµν(q) =
(

−gµν +
qµqν

q2

)

{

λ2
A

M 2
A−q2

+
1

π

∫∞

s0
A

ds
ρh

A(s)

s−q2

}

, (6)

where Mt with subscript t being S or A for the scalar

or axial-vector respectively, is the mass of the ground

state diquark, ρh
t (s) is the spectral density and repre-

sents the contribution from the higher excited states

and the continuum, s0
t is the threshold for the excited

states and continuum, the pole residues λt correspond

to the diquark coupling strength, is defined through

[18]:

〈0|J i(0)|Sj(q)〉 = λSδ
ij , (7)

〈0|J i
µ(0)|Aj(q)〉 = λAεµδij , (8)

with εµ being the polarization vector of the axial-

vector diquark.

On the quark side, the operator product expan-

sion (OPE) is applied to derive the correlation func-

tions. Firstly, we can write down the “full” propa-

gator Sij
Q (x) of a massive quark, where the vacuum

condensates are clearly displayed [19].

Sij
Q (x) =

i

(2π)4

∫
d4pe−ip·x

{

δij

6 p−mQ

−gs(t
k)ijGαβ

k

4

σαβ(6 p+mQ)+(6 p+mQ)σαβ

(p2−m2
Q)2

+
π

2

3

〈

αsGG

π

〉

δijmQ

p2 +mQ 6 p
(p2−m2

Q)4
+ · · ·

}

,

(9)

where
〈

αsGG

π

〉

=

〈

αsGαβGαβ

π

〉

,
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then contracting the quark fields in the correlation

functions, we gain the results:

Π(q) = −iεijkεij′k′

∫
d4xeiq·x

×Tr

{

γ5S
jj′

Q (x)γ5CSkk′T
Q (x)C

}

, (10)

Πµν(q) = iεijkεij′k′

∫
d4xeiq·x

×Tr

{

γµSjj′

Q (x)γνCSkk′T
Q (x)C

}

. (11)

Then substituting the full c and b quark propaga-

tors into above correlation functions and integrating

over the variable k, we obtain the correlation func-

tions at the level of quark-gluon degrees of freedom.

Simply, the correlation function Πt(q
2) (t=S or A) is

written as:

Πt(q) = Πpert
t (q)+Πcond,4

t (q), (12)

where the superscripts “pert”, and “cond” refer to

the contribution from the perturbative QCD, and

gluon condensates, respectively. In this work, we only

keep the two-gluon condensate in consideration for

the heavy quark condensates are zero as suggested in

literature [19].

Due to the quark-hadron duality, we differentiate

Eq. (14) with respect to
1

M 2
B

, then eliminate the pole

residues λt, and obtain the resultant sum rule for the

mass spectra of the H-H diquark states:

Mt =

√

−R1
t

R0
t

, (13)

with

R0
t =

1

π

∫s0
t

(mQ1
+mQ2

)2
dsρpert

t (s)e−s/M2
B

+B̂[Πcond,4
t (q2)], (14)

R1
t =

∂
∂M−2

B

R0
t . (15)

Here, MB is the Borel parameter and s0 is the thresh-

old cutoff introduced to remove the contribution of

the higher excited and continuum states [20, 21].

For the H-H diquark states, the detailed expres-

sions of R0
t are collected in the appendix.

3 Numerical analysis

3.1 The masses of the ground diquark states

with only heavy flavors.

The numerical parameters used as inputs in this

work are taken as [16, 18, 19, 22]

〈q̄q〉= −(0.24±0.01 GeV)3,

〈s̄s〉= (0.08±0.02)〈q̄q〉,
〈q̄gsσGq〉= m2

0〈q̄q〉, 〈s̄gsσGs〉= m2
0〈s̄s〉,

m2
0 = (0.8±0.2) GeV2,

〈αs

π

G2
〉

= 0.012 GeV4,

mu ≈ md = 0.005 GeV,

ms = (0.14±0.01) GeV,

mc = (1.35±0.10) GeV,

mb = (4.7±0.1) GeV.

(16)

where the energy scale is µ = 1 GeV.

It is crucial to determine the proper threshold s0

and Borel parameter M 2
B for obtaining physical spec-

tra. There are two criteria used for justifying if the

choice is suitable. One is that the perturbative contri-

bution should be larger than the contributions from

all kinds of condensates, and the other is that the

pole contribution should be larger than the contin-

uum contribution [16, 19]. In our work, the error

bars are estimated by varying the Borel parameters,

s0, and also including the uncertainties of the input

parameters.

The spectra of the L-L and H-L diquarks have

been studied in the previous literature [17, 18]. Our

input parameters are the same as those used in

Ref. [18]. Numerically we have rechecked the results

of the previous works for spectra of L-L and H-L di-

quarks and find our results are consistent with them,

thus we simply present the relevant results for the

L-L and H-L diquarks in the following table. The an-

alytical formulations for the H-H diquarks are shown

in the appendix and that for L-L and H-L can be

found in the relevant references which we list in the

bibliography of the work.

3.2 Discussion on the stability of the ground

diquark states.

In Table1, we present the masses and the thresh-

old
√

s0 of the H-H scalar and axial-vector diquark

ground states. Then, together with those given in lit-

erature, we collect the results for all three types of

diquarks in the following table. Here we define the

energy gap as ∆E =
√

s0−Md, where Md is the mass

of the corresponding diquark state.
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Table 1. For the H-H diquark states, we show the masses, the preferred Borel parameters M 2
B, the threshold

parameters s0, the contribution from the pole term to the spectral density, and the contribution from
〈αs

π

G2
〉

.

mass/GeV M2
B/GeV2

√
s0/GeV pole

〈

αsGG

π

〉

cc(1+) 2.99±0.10 1.2−2.5 3.3±0.1 (56−88)% (4−8)%

bc(0+) 6.30±0.09 2.2−5.0 6.6±0.1 (85−99)% (5−14)%

bc(1+) 6.36±0.08 3.0−6.0 6.7±0.1 (53−85)% (3−5)%

bb(1+) 9.76±0.08 6.0−14.0 10.1±0.1 (41−79)% (0.04−0.23)%

As aforementioned, we use energy gap ∆E to em-

body the stability of diquarks. Namely, according to

our general knowledge on quantum mechanics, the

continuous spectra would correspond to a dissolved

state where the constituents of the supposed-bound

state are set free. Thus we choose the gap between

the mass of the ground state and the corresponding

threshold
√

s0 as the criterion of stability of the di-

quark. In Tables 2–4, we show the energy gap ∆E

for the three types of diquarks. Concretely, the en-

ergy gap is between 0.40 GeV and 0.55 GeV for L-L

diquarks, between 0.34 GeV and 0.43 GeV for H-L

diquarks, and between 0.30 GeV and 0.34 GeV for

Table 2. The diquark masses, the preferred

Borel parameters MB, the preferred threshold

parameters s0 obtained by choosing reason-

able plateaus, and the energy gap ∆E for each

possible L-L diquark state. Here the revelent

results are derived from the corresponding for-

mulae in Ref. [17] with our input parameters.

mass/GeV M2
B/GeV2

√
s0/GeV ∆E/GeV

sq(0+) 0.55±0.03 1.0 0.95 0.40

qq(1+) 0.34±0.04 4.0 0.85 0.51

sq(1+) 0.42±0.03 4.0 0.95 0.53

ss(1+) 0.50±0.05 4.0 1.05 0.55

Table 3. The diquark masses, the preferred

Borel parameters MB, the preferred thresh-

old parameters s0 obtained by choosing rea-

sonable plateaus for the H-L diquarks. These

revelent results have already been obtained in

Ref. [18].

mass/GeV M2
B/GeV2

√
s0/GeV ∆E/GeV

cq(0+) 1.77 1.50 2.19 0.42

cq(1+) 1.76 1.60 2.19 0.43

cs(0+) 1.84 1.55 2.24 0.40

cs(1+) 1.84 1.65 2.24 0.40

bq(0+) 5.14 3.85 5.48 0.34

bq(1+) 5.13 3.95 5.48 0.35

bs(0+) 5.20 3.95 5.57 0.37

bs(1+) 5.22 4.10 5.57 0.35

H-H diqaurks. One can observe that the sequence of

the energy gaps for these three types of diquarks is:

∆EL-L > ∆EH-L > ∆EH-H. If a larger energy gap im-

plies more stable structure, the L-L diquarks should

be the stablest and the H-H diquarks the most unsta-

ble, however, this definitely contradicts our intuition.

Let us discuss this issue in next section.

Table 4. The H-H diquark masses, the pre-

ferred Borel parameters MB, the preferred

threshold parameters s0 obtained by choosing

reasonable plateaus.

mass/GeV M2
B/GeV2

√
s0/GeV ∆E/GeV

bc(0+) 6.30 3.6 6.6 0.30

cc(1+) 2.99 1.9 3.3 0.31

bc(1+) 6.36 4.5 6.7 0.34

bb(1+) 9.76 10.0 10.1 0.34

4 Summary and conclusions

In this work, we study the stability of three types

of scalar and axial vector diquarks (L-L, H-L, and H-

H) in terms of the QCD sum rules. We first calculate

the mass spectra of the scalar (0+) and axial-vector

(1+) H-H diquarks. Together with the results given in

the previous works about L-L [17] and H-L diquarks

[18], we compare the corresponding ∆E, which is sup-

posed to be a reference criterion for the stability of

the diquark sub-structure.

However, the numerical results obtained in terms

of the QCD sum rules determine the sequence

∆EL-L > ∆EH-L > ∆EH-H. Even though actually the

values of ∆EL-L, ∆EH-L and ∆EH-H are not far apart,

this sequence obviously conflicts our common sense

where the H-H diquark is the most stable structure.

Because the computation with the QCD sum rules

possesses over 20% errors and the determined ∆E

values do not differ much (less than 20%), we cannot

decide if the H-H diquark is the most unstable one.
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Thus, we would be tempted to conclude that due

to the large errors brought up in the computations

with the QCD sum rules, it is not suitable for deter-

mining the stability in terms of the QCD sum rules,

and we have to turn to other theoretical approaches

to investigate this important issue, which would be

the goal of our next work.

When we completed this work, we noticed that a

new paper about the spectra of the L-L diquark ap-

pears at the ArXiv as hep-ph 1112.5910. Even though

the concrete numbers are slightly different from that

given in Ref. [15], the general trend is similar and

our qualitative conclusion does not change at all.

Appendix A

For the H-H diquark, our analytical expressions are shown as follows:

ρS(s) = − 3

4πs

(

m
2
Q1

+2mQ1mQ2 +m
2
Q2

−s
)

√

(m2
Q1

−m2
Q2

+s)2−4m2
Q1

s, (A1)

ρA(s) =
3

2πs

(

m
2
Q1

−4mQ1mQ2 +m
2
Q2

)

√

(m2
Q1

−m2
Q2

+s)2−4m2
Q1

s, (A2)

G
1
S(M2

B) = 〈αsG
2〉

∫1

0

dxe
−

m
2
Q1
x

+
m

2
Q2

1−x

M2
B

{

(4−9x)(1−x)

16π

+
1

32πx3M2
B

[

2(1−x)(9x
2

−13x+4)x3
m

2
Q1

+18xmQ1mQ2 +2(x−1)(9x−4)x4
m

2
Q2

]

+
1

32πx3M4
B

×
[

(1−x)(−9x
5+22x

4−17x
3 +4x

2−7x+7)xm
4
Q1

+(6x
3−6x

2 +3x

−2)m3
Q1

mQ2 +(1−x)
(

18x
4−26x

3 +8x
2 +7

)

x
2
m

2
Q1

m
2
Q2

−6x
3
mQ1m

3
Q2

+(4−9x)(1−x)x5
m

4
Q2

]

+
1

32πx3M6
B

[

3(1−x)(x−1)2
(

x
3−x

2 +1
)

x
2

×m
6
Q1

+3
(

x
4−2x

3 +x
2 +x−1

)

xm
5
Q1

mQ2 +3(x−1)(3x
4−6x

3 +3x
2

+2x−2)x3
m

4
Q1

m
2
Q2

−3
(

2x
3−2x

2 +1
)

x
2
m

3
Q1

m
3
Q2

+(1−x)(9x
3−9x

2

+3)x4
m

2
Q1

m
4
Q2

+3x
5
mQ1m

5
Q2

+3(x−1)x7
m

6
Q2

]

}

, (A3)

G
2
S(M2

B) = G
S
1(M2

B,mQ1 ↔mQ2), (A4)

G
3
S(M2

B) = 〈αsG
2〉

∫1

0

dxe
−

m
2
Q1
x

+
m

2
Q2

1−x

M2
B

{

− 9
(

2x2−2x−1
)

64π

− 1

64π(x−1)3x3M2
B

×
[

3(3x
2
(

2x
2−2x−1

)

(x−1)3m2
Q1

+8x
2(x−1)2mQ1mQ2

−3x
3
(

2x
2−2x−1

)

(x−1)2m2
Q2

)
]

− 1

64π(x−1)3x3M4
B

×
[

3(3(x−1)2x4
m

4
Q2

+3(x−1)4x2
m

4
Q1

+(x−1)x2(−6x
3 +12x

2

−7x+1)m2
Q2

m
2
Q1

)
]

− 1

64π(x−1)3x3M6
B

[

3(−x
5
m

6
Q2

+(x−1)x3

×(3x−2)m4
Q2

m
2
Q1

+(x−1)5m6
Q1

+(1−3x)(x−1)3xm
2
Q2

m
4
Q1

)
]

}

. (A5)
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G
1
A(M2

B) = 〈αsG
2〉

∫1

0

dxe
−

m
2
Q1
x

+
m

2
Q2

1−x

M2
B

{

− (x−1)(9x−4)

8π

− 1

16π(x−1)2x3M2
B

[

−2x
3

×(9x−4)(x−1)2m2
Q2

+2x
2(9x−4)(x−1)3m2

Q1
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]
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Q2

+(x−1)3
(

9x
2−4x−7

)
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4
Q1

−(x−1)2x
(
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)

m
2
Q2
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2
Q1

+12(x−1)x2
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Q2
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×(3x+2)mQ2m
3
Q1

]

− 1

16π(x−1)2x3M6
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[

−3x
4
m

6
Q2

+6x
3
m

5
Q2

mQ1

+(x−1)x2(9x−3)m4
Q2

m
2
Q1

+3(x−1)4m6
Q1

+6(x−1)3mQ2m
5
Q1

−3(x−1)2x(3x−2)m2
Q2

m
4
Q1

−6(x−1)x(2x−1)m3
Q2

m
3
Q1

]

}

, (A6)

G
2
A(M2

B) = G
1
A(M2

B,mQ1 ↔mQ2), (A7)

G
3
A(M2

B) = 〈αsG
2〉

∫1

0

dxe
−

m
2
Q1
x

+
m

2
Q2

1−x

M2
B

{

− 3
(

6x2−6x+5
)

32π

− 1

32π(x−1)3x3M2
B

×
[

3
(

(x−1)3x2 (

6x
2−6x+5

)

m
2
Q1

− (x−1)2x3 (

6x
2−6x+5

)

m
2
Q2

)

]

− 1

32π(x−1)3x3M4
B

[

3(3(x−1)4x2
m

4
Q1

+(x−1)x2(−6x
3 +12x

2−7x

+1)m2
Q2

m
2
Q1

+x
3 (

3x
3−6x

2 +5x−2
)

m
4
Q2

)
]

− 1

32π(x−1)3x3M6
B

×
[

3
(

(2−x)x4
m

6
Q2

+(x−1)x2(3x
2−6x+2

)

m
4
Q2

m
2
Q1

+(x−1)5m6
Q1

−3(x−1)4xm
2
Q2

m
4
Q1

)
]

}

. (A8)

References

1 Gell-Mann M. Phys. Lett., 1996, 8: 214

2 Majethiya A, Patel B, Rai A K, Vinodkumar P C.

arXiv:hepph/0809.4910

3 TONG S P, DING Y B, GUO X H et al. Phys. Rev. D,

2000, 62: 054024

4 Ebert D, Faustov R N, Galkin V O et al. Phys. Rev. D,

2002, 66: 014008

5 HE D H, QIAN K, DING Y B et al. Phys. Rev. D, 2004,

70: 094004

6 Kiselev V V, Likhoded A K, Pakhomova O N et al. Phys.

Rev. D, 2002, 66: 034030

7 Maiani L, Piccinini F, Polosa A D et al. Phys. Rev. D, 2005,

71: 014028

8 Nielsen M, Matheus R D’E, Navarra F S et al. Nucl. Phys.

Proc. Suppl, 2006, 161: 193–199

9 DING G J, YAN M L. Phys. Lett. B, 2006, 643: 33-40

10 ZHANG A, HUANG T, Steele T G. Phys. Rev. D, 2007,

76: 036004

11 Rehman A. arXiv:hepph/1109.1095

12 Kim K, Jido D, Lee S H. Phys. Rev. C, 2011, 84: 025204

13 TANG L, YUAN X H, QIAO C F et al. Study of Doubly

Heavy Baryon Spectrum via QCD Sum Rules. Commun.

Theor. Phys, to be published. arXiv:hepph/1104.4934

14 Ishii N, Bentz W, Yazaki K, Nucl. Phys. A, 1995, 587: 617

15 Nicmorus D, Eichmann G, Krassnigg A et al. PoS C, 2008,

ONFINEMENT8: 052

16 Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys.

B, 1979, 147: 385; Nucl. Phys. B, 1979, 147: 448

17 Dosch H G, Jamin M, Stech B. Z. Phys. C, 1989, 42: 167;

Jamin M, Neubert M. Phys. Lett. B, 1990, 238: 387

18 WANG Z G. Eur. Phys. J. C, 2011, 71: 1524

19 Reinders L J, Rubinstein H , Yazaki S. Phys. Rept, 1985,

127: 1

20 Colangelo P, Khodjamirian A. At the Frontier of Particle

Physics / Handbook of QCD. Ed. Shifman M. Singapore:

World Scientific, 2001. arXiv:hepph/0010175

21 DU D S, LI J W, YANG M Z. Phys. Lett. B, 2005, 619:

105

22 Ioffe B L. Prog. Part. Nucl. Phys., 2006, 56: 232


