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Evidence for special relativity with de
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Abstract: I show the formulation of de Sitter Special Relativity (dS-SR) based on Dirac-Lu-Zou-Guo’s

discussions. dS-SR quantum mechanics is formulated, and the dS-SR Dirac equation for hydrogen is suggested.

The equation in the earth-QSO framework reference is solved by means of the adiabatic approach. It’s found

that the fine-structure “constant” α in dS-SR varies with time. By means of the t-z relation of the ΛCDM

model, α’s time-dependency becomes redshift z-dependent. The dS-SR’s predictions of ∆α/α agree with data

of spectra of 143 quasar absorption systems, the dS-space-time symmetry is SO(3,2) (i.e., anti-dS group) and

the universal parameter R (de Sitter ratio) in dS-SR is estimated to be R≈ 2.73×1012 ly. The effects of dS-SR

become visible at the cosmic space-time scale (i.e., the distance > 109 ly). At that scale, dS-SR is more reliable

than Einstein SR. The α-variation with time is evidence of SR with de Sitter symmetry.
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1 Introduction

Einstein’s Special Relativity (E-SR) is the cor-

nerstone of physics, and any discovery beyond E-SR

would be very significant. E-SR indicates the space-

time metric is ηµν = diag{+,−,−,−}. The most

general transformation to preserve metric ηµν is the

Poincaré group. It is well known that the Poincaré

group is the limit of the de Sitter group with sphere

radius R → ∞. Thus people could pursue whether

there exists another type of de Sitter transformation

with R→finite which also leads to a Special Relativ-

ity theory (SR). In 1935, P.A.M. Dirac presented an

electron wave equation in de Sitter space, and sug-

gested the study of atomical physics in the equation

based on such a kind of special relativity, i.e., the

Special Relativity with de Sitter symmetry (dS-SR)

[1]. Differing from General Relativity (GR), SRs rely

on two principles: 1) the inertial motion law for free

particle must hold; and 2) there must exist a specific

space-time symmetry in the frameworks. Both E-SR

and dS-SR satisfy these two principles (see below).

To address the difference between GR and SR, Dirac

pointed out [1] that de Sitter space-time is associated

“with no local gravitational fields” (just like the case

in Minkowski space).

In this paper, I will study dS-SR, and solve the

dS-SR Dirac equation of hydrogen atom by means

of adiabatic approximation, and show that the time-

variation of the fine-structure constant reported by

[2–5] is evidence of dS-SR, and hence an effect beyond

E-SR. In other words, the true SR for the real world

is dS-SR with SO(3,2) dS-space-time symmetry (or

anti-dS group) and dS sphere radius R≈ 2.73×1012ly

instead of E-SR.

Spectroscopic observations of gas clouds seen in

absorption against a background quasi-stellar object

(QSO) (see Fig. 1) have been used to search for time

variation of α≡ e2/(~c). Comparing the observations

with the corresponding atomic spectra measured in

the laboratory, the results clearly show the first ex-

perimental evidence of the fundamental physics con-

stant variations [2–5]. Even though there are some

debates on the results [2], this discovery is very sig-

nificant, and has greatly stimulated the various theo-

retical discussions during the last decade (e.g., see
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Refs. [6, 7]). The BSBM model [8–10] is one of them.

This theory models the variation in α by means of a

scalar field that obeys a Euler-Lagrangian equation

derived from an action. Combining the scalar field

theory with General Relativity (GR) and adjusting

the model’s parameters, one can get suitable results

describing the α-variation and evolutions along with

z (redshift). However, the price paid for the successes

of BSBM is that an unknown matter field (i.e., scalar

field) has to be introduced. Some authors called the

force propagated by the quanta of such an unknown

field as the “fifth force” [11], which breaks the electric

charger conservation law [12], and violates the weak

equivalence principle [9]. There is not yet any exper-

imental evidence to show the existence of such ma-

terial scalar field so far besides explaining the time-

variation of α. In this case, therefore, searching for

an alternative scenario without any unknown particle

to explain the α-variation with time would be more

conservative, and hence more reliable for solving the

puzzle.

Fig. 1. A sketch map showing an example of

a spectrum of gas clouds seen in absorp-

tion against a background quasi-stellar object

(QSO) (download from M. T. Murphy’s slide

file (2009)).

Moreover, the absorption spectra observations re-

sulting in declaration of α-variation with time re-

ported by [2–5] rely on the measurements of the spec-

trum’s fine-structures of atoms and ions at gas clouds

near QSO. So, if possible, Quantum Mechanics (QM)

calculations of atomic spectra for atoms in the dis-

tance in some suitable model would be a direct an-

swer to the puzzle. For example, the dS-SR atomic

physics scheme suggested by Dirac [1] should be con-

sidered seriously. As is well known, the spectra fine-

structures in atomic physics represent E-SR correc-

tions to levels, which are in principle derived from

the E-SR Dirac equation in QM. In particular, the E-

SR Dirac equation of hydrogen in QM has an exact

solution, and the calculations of such corrections are

sound. These corrections are space-time independent,

and hence α is a constant due to the space-time trans-

lation invariant symmetry of E-SR. Thus, it should be

very interesting to pursue what the dS-SR corrections

to the levels of atoms in distance are in QM by means

of solving the dS-SR Dirac equation of hydrogen. Be-

cause the time translations of dS-SR are significantly

different from those of E-SR, one could expect that

dS-SR QM may yield time-dependent α, and lead to

solving the puzzle. In the following, I pursue this

topic.

2 Solutions of hydrogen’s dS-SR Dirac

equation

In order to precisely formulate the dS-SR space-

time theory and dynamics, in 1970–1974, LU, ZOU

and GUO1) [13] (for the English version, see Refs.

[14, 15]) proved two theorems, as follows.

Lemma .: Inertial motion law for free particles

holds to be true in the de Sitter space characterized

by Beltrami metric

Bµν(x) =
ηµν

σ(x)
+

λ

R2σ(x)2
ηµληνρx

λxρ, (1)

where

σ(x)≡ 1−
λ

R2
ηµνx

µxν ,

R2 > 0, and λ = 1 or −1, which corresponds to dS

symmetries SO(4,1) or SO(3,2), respectively. And

the constant R is the radius of the pseudo-sphere in

dS-space. This means that in dS space characterized

by Bµν , the velocity of a free particle is constant, i.e.,

ẋ=−→v = cnstant, for free particle (2)

which is exactly the counterpart of E-SR’s inertial law

in Minkowski space characterized by ηµν (see Refs.

[14, 15] for the English version of proof to Eq. (2)).

Lemma /: The de Sitter space-time transforma-

tion preserving Bµν(x) is

xµ −→ x̃µ = ±σ(a)1/2σ(a,x)−1(xν −aν)Dµ
ν ,

Dµ
ν = Lµ

ν +λR−2ηνρa
ρaλ(σ(a)+σ1/2(a))−1Lµ

λ ,

L : = (Lµ
ν )∈SO(1,3),

σ(x) = 1−
λ

R2
ηµνx

µxν ,

σ(a,x) = 1−
λ

R2
ηµνa

µxν , (3)

1)LOOK K H (LU Qi-Keng), Why the Minkowski metric must be used ?, (1970), unpublished.
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where xµ is the coordinate in an initial Beltrami

frame, and x̃µ is in another Beltrami frame whose

origin is aµ in the original one. There are 10 param-

eters in the transformations between them. Under

transformation (3), we have the equation preserving

Bµν as follows,

Bµν(x)−→ B̃µν(x̃) =
∂xλ

∂ x̃µ

∂xρ

∂ x̃ν
Bλρ(x) =Bµν(x̃) (4)

(see Appendix of Ref. [15] for the English version of

proof to Eq. (4)). Eq. (4) will yield conservation laws

for the energy, momenta, angular momenta and boost

chargers of particles in dS-SR mechanics [15].

Based on those two lemmas, Yan, Xiao, Huang

and Li formulated the Lagrangian-Hamiltonian for-

mulism for dS-SR dynamics with two universal con-

stants c and R, and the dS-SR Dirac equation has

been proved to be [15–18]
(
ieµ

aγ
aDµ−

m0c

~

)
ψ= 0, (5)

where eµ
a is the tetrad satisfying eµ

ae
ν
bη

ab =Bµν , and

Dµ = ∂µ−
i

4
ωab

µ σab

is the covariant derivative with Lorentz spin connec-

tion ωab
µ derived from Bµν of Eq. (1). Furthermore,

by gauge principle, Dµ →Dµ =Dµ− ie/(c~)Aµ) with

Aµ =BµνA
ν , Aν = (φ, A = 0) and

−Bij ∂i ∂j φ=
−4πe√

−det(Bij)
δ(3)(x)

, where φ is the proton’s electric Coulomb potential,

one has the dS-SR Dirac equation for the electron in

hydrogen atom as follows

(ieµ
aγ

aDL
µ −

µc

~
)ψ= 0, (6)

where

µ=me/

(
1+

me

mp

)

is the reduced mass of electron. In this formulism, the

conserved measurable 4-momentum operator is [15]

pµ = i~

[(
ηµν −

λxµxν

R2

)
∂ν +

5λxµ

2R2

]
. (7)

The observation results reported by Refs. [2–5] are

the absorption spectra of gas clouds against back-

ground QSO. We briefly call the gas-QSO system

QSO for simplicity. We are interested in the atoms,

typically the hydrogen atom, at QSO that locates

on the light-cone in de Sitter space with Beltrami

metrics because only this kind of QSO can be ob-

served by earth-observers. As illustrated in Fig. 2,

the earth locates at the origin of the frame, the

proton (nucleus of hydrogen atom) locates at Q =

{Q0 ≡ ct, Q1 = ct, Q2 = 0, Q3 = 0}, which is on

QSO-light-cone Bµν(Q) QµQν = ηµνQ
µQν = 0. The

metric of the space-time near Q is Bµν(Q) = ηµν +
λ

R2
ηµλQ

ληνρQ
ρ, and hence Bij(Q) = ηij+

λc2t2

R2
δi1δj1.

Electron-coordinates are L= {L0 ≡ ctL, L
1, L2, L3},

and the relative space coordinates between the pro-

ton and electron are xi =Li−Qi. The magnitude of

r ≡
√
−ηijxixj ∼ a (where a≈ 0.5×10−10 m is Bohr

radius), and |xi| ∼ a. Another scale is the Compton

wave length of electron ac = ~/(mec)≈ 0.3×10−12 m.

Noting R is cosmologically large and R� ct, so the

calculations for our purpose will be accurate up to

O(c2t2/R2). The terms proportional to O(c4t4/R4),

O(ctac/R
2), O(cta/R2), etc. will be ignored. Note

also that Eq. (7) indicates that the energy eigenstate

equation is

Eψ= i~

[
∂t−

λc2t2

R2
∂t +

5λct

2R2

]
ψ≈ i~

(
1−

λc2t2

R2

)
∂tψ.

Then Eq. (6) becomes

Eψ=

[
−i~c

(
1−

λc2t2

2R2

)
~α ·∇B +

(
1−

λc2t2

2R2

)
µc2β

−
e2

rB

]
ψ, (8)

where rB =
√

(x̃1)2 +(x2)2 +(x3)2 with x̃1 = (1 −

λc2t2/(2R2))x1 and

∇B = i
∂

∂ x̃1
+j

∂
∂x2

+k
∂

∂x3
.

Eq. (8) is a time-dependent quantum Hamiltonian

equation. It is somewhat difficult to deal with the

time-dependent problems in quantum mechanics.

Fortunately, comparing (8) with the usual E-SR Dirac

equation for hydrogen, all correction terms due to

dS-SR are proportional to (c2t2/R2). since R � ct,

those factors make the time-evolution of the system so

slow that the adiabatic approximation [19] will legiti-

mately work (see Chapter 74 of Vol / of Ref. [20],

and Appendix B in Ref. [18]). Thus, rewriting (8) as

Eψ=

[
−i~tc~α ·∇B +µtc

2β−
et

2

rB

]
ψ

with

~t =

(
1−

λc2t2

2R2

)
~, µt =

(
1−

λc2t2

2R2

)
µ, et = e,

we obtain the predictions

αt ≡
e2t
~tc

=

(
1+

λc2t2

2R2

)
α, or

∆α

α
=
λc2t2

2R2
, (9)



No. 3 YAN Mu-Lin: Evidence for special relativity with de Sitter space-time symmetry 231

ωt = E/~t =
µt

~t

c2

[
1+

α2
t

(
√
K2−α2

t +nr)2

]
−1/2

=
µ

~
c2

[
1+

α2
t

(
√
K2−α2

t +nr)2

]
−1/2

. (10)

Fig. 2. Sketch of the earth-QSO reference

frame. The earth locates at the origin. The

position vector for the nucleus of the atom on

QSO is Q, and for the electron is L. The dis-

tance between the nucleus and electron is r.

3 Comparison between theory predic-

tions and observation data

Murphy and collaborators [3] studied the spectra

of 143 quasar absorption systems over the redshift

range 0.2< zabs < 4.2. Their most robust estimate is

a weighted mean,

∆α

α
= (−0.57±0.11)×10−5. (11)

Compared with the prediction (9), we conclude that

λ=−1. (12)

This means that the space-time symmetry for dS-

SR is de Sitter-SO(3,2) instead of anti-de Sitter-

SO(4,1). Substituting Eq. (12) into (9), we predict

as follows,

∆α

α
=−

c2t2

2R2
. (13)

The 134 data points are assigned three epochs in

Ref. [21] (see Table 1), and the redshift z-dependence

of ∆α/α is shown roughly in Ref. [21]. In the fol-

lowing, I further test the prediction of (9) in terms of

these z-dependent data of ∆α/α. In order to transfer

the t-dependence of ∆α/α in (9) to a z-dependence

prediction, a relation of t-z is needed. For this aim, an

appropriate cosmological model is necessary. In this

paper, we treat t as comoving time t in the ΛCDM

model [22, 23]. In the model, the t-z relation is as

follows,

t=

∫z

0

dz′

H(z′)(1+z′)
, (14)

where

H(z′) = H0

√
Ωm0(1+z′)3 +1−Ωm0,

H0 = 100 h≈ 100×0.705 km ·s−1/Mpc,

Ωm0 ≈ 0.274.

The t-z relation is shown in Fig. 3(a). Substitut-

ing this relation into (9), we obtain a desirable z-

dependence prediction of
∆α

α
(z), where R is a free

parameter. By using the observation data
∆α

α
(z =

1.47) =−0.58×10−5, we get R≈ 2.73×1012 ly (which is

consistent with the estimation in Ref. [24]). Then the

theory predictions are
∆α

α
(z= 0.65) =−0.24×10−5

and
∆α

α
(z= 2.84) =−0.87×10−5, which are in agree-

ment with the corresponding data in Refs. [3] and

[21]. The results are listed in Table 1, and the curve

of
∆α

α
(z) is shown in Fig. 3(b). The comparison in-

dicates that the dS-SR theory predictions of (9) agree

with the observation data within the error band.

Fig. 3. (a) The t-z relation in the ΛCDM model; (b) the ∆α/α as function of the red shift z; (c) the evolution

of α-variations
∆α

α
(z) along with z. By Eq. (13) with R≈ 2.73×1012 ly and the ΛCDM model’s t-z relation,

a
∆α

α
(z) curve is plotted in the region of (0 6 z 6 4000).
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Table 1. Time variations of ∆α/α: the first two

columns are quoted from Ref. [21]. Eq. (13)

with R≈ 2.73×1012 ly, and the ΛCDM model’s

t-z relation (14) are used.

redshift 〈z〉 and (t) (∆α/α)expt results of (13)

0.65 (6.04 Gyr) (−0.29±0.31)×10−5 −0.24×10−5

1.47 (9.29 Gyr) (−0.58±0.13)×10−5 −0.58×10−5

2.84 (11.39 Gyr) (−0.87±0.37)×10−5 −0.87×10−5

Next, we turn to discuss the evolution of α-

variations
∆α

α
(z) along with z, and plot a

∆α

α
(z)

curve in the region of (0 6 z6 4000) in Fig. 3(c). We

can see that z < 10,
∆α

α
(z) changes relatively sharply,

and then the changes become slow. When z > 103,
∆α

α
(z) is almost independent of z, i.e., α-variation

ceases in that very high z region. Fig. 3(c) shows that

the lower bound of
∆α

α
(z) is about ∼ −1.3× 10−5.

This result coincides with other considerations (e.g.,

BSBM model) [9], which suggests a negligible change

in α in the radiation epoch of the universe, that epoch

roughly corresponds to z> 3×103.

4 Conclusion

In summary, in this paper, I have shown the for-

mulation of de Sitter Special Relativity (dS-SR) based

on Dirac-Lu-Zou-Guo’s discussions, formulated the

dS-SR quantum mechanics, and then determined the

dS-SR Dirac equation for hydrogen. In order to dis-

cuss the spectra of atoms on (or near) QSO, I solved

it in the earth-QSO framework reference by means of

the adiabatic approach. Aspects of de Sitter space-

time geometry described by the Beltrami metric are

taken into account. The dS-SR Dirac equation of

hydrogen turns out to be a time dependent quan-

tum Hamiltonian system. Since the radius of de Sit-

ter sphere R is cosmologically large, it makes the

time-evolution of the system so slow that the adia-

batic approximation legitimately works with high ac-

curacy. Consequently, it is revealed that all those

facts yield important conclusions that the electromag-

netic fine-structure “constant” α varies with time. By

means of the t-z relation of the ΛCDM model, the α’s

time-dependent becomes redshift z-dependent. The

dS-SR’s predictions of ∆α/α are in agreement with

the data, the dS-space-time symmetry is SO(3,2)

(i.e., anti-dS group) and the universal parameter R

(the de Sitter ratio) in the theory is estimated to

be R ≈ 2.73× 1012 ly. This fact indicates that the

effects of dS-SR become visible at the cosmic space-

time scale (i.e., the distance > 109 ly). At that scale,

de Sitter Special Relativity is more reliable than Ein-

steinian Special Relativity, and the latter is the for-

mer’s approximation for the distance, which is much

less than R, or much less than ∼ 109 ly. I conclude

that the α-variation with time is evidence of SR with

de Sitter symmetry.
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