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Neutrino masses and lepton-flavor-violating τ decays

in the supersymmetric left-right model *
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Abstract: In the supersymmetric left-right model, the light neutrino masses are given by the Type-/ seesaw

mechanism. A duality property of this mechanism indicates that there exist eight possible Higgs triplet Yukawa

couplings which result in the same neutrino mass matrix. In this paper, we work out the one-loop renormal-

ization group equations for the effective neutrino mass matrix in the supersymmetric left-right model. The

stability of the Type-/ seesaw scenario is briefly discussed. We also study the lepton-flavor-violating processes

(τ→µγ and τ→ eγ) by using the reconstructed Higgs triplet Yukawa couplings.
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1 Introduction

Current solar, atmospheric, reactor and acceler-

ator neutrino oscillation experiments have provided

us with very convincing evidence that neutrinos have

non-vanishing masses and lepton flavors are mixed

[1–5]. A global analysis of current experimental data

yields 30◦ 6 θ12 6 38◦, 36◦ 6 θ23 6 54◦ and 0 < θ13 <

10◦ as well as ∆m2
21 ≡m2

2−m2
1 = (7.2···8.9)×10−5 eV2

and ∆m2
32 ≡ m2

3 −m2
2 = ±(2.1 · · · 3.1)× 10−3 eV2 at

the 99% confidence level [6], but three CP -violating

phases (i.e., the Dirac phase δ and the Majorana

phases ρ and σ) are entirely unrestricted. These im-

portant results indicate that there should be a more

fundamental theory beyond the Standard Model, in

which three neutrinos are massless Weyl particles.

One possible candidate for such a theory is the super-

symmetric version of the left-right symmetric model

[7], which provides a natural embedding of the seesaw

mechanism for small neutrino masses [8].

The supersymmetric left-right model [9, 10] is

based on the gauge group SU(3)C×SU(2)L×SU(2)R×
U(1)B−L. The quarks and leptons transform under

the gauge group as Q (3, 2, 1, 1/3), Qc (3∗, 1,

2, −1/3), L (1, 2, 1, −1) and Lc (1, 1, 2, 1).

In the gauge sector, there are triplet gauge bosons

(W+, W−, W0)L, (W+, W−, W0)R corresponding

to SU(2)L and SU(2)R and a vector boson V cor-

responding to U(1)B−L, together with their super-

partners. Fermion masses arise from the Yukawa cou-

pling between quarks, leptons and Higgs bi-doublets:

Φu(2, 2, 0) and Φd(2, 2, 0). The gauge group

SU(2)R×U(1)B−L is broken to the hypercharge sym-

metry U(1)Y by the vacuum expectation value (vev)

of a B−L =−2 Higgs triplet ∆c(1, 1, 3, −2), which

is accompanied by a left-handed Higgs triplet ∆(1, 3,

1, 2). The choice of the triplets is preferred because

with this choice the seesaw arises from purely renor-

malizable interactions. In addition to ∆ and ∆c, the

model must contain their conjugate fields ∆̄ and ∆̄c

to ensure the cancellation of the anomalies that would

otherwise occur in the fermionic sector. Given their

strange quantum numbers, the ∆̄ and ∆̄c do not cou-

ple to any of the particles in the theory, and thus

their contributions are negligible for any phenomeno-

logical studies. The gauge invariant part of the matter

superpotential can be written as

W = Y i
q(Qc)TΦ̃iQ+Y i

l (Lc)TΦ̃iL

+i
(

FLT
τ2∆L+FcL

cT
τ2∆

cLc
)

, (1)

where Φ̃i = iτ2Φi is defined and i=u, d. All of the cou-

plings Y i
q , Y i

l , F and Fc are complex with F and Fc

being symmetric matrices. The left-right symmetry

implies Y i
α = (Y i

α
)† (α=q, l) and F = F∗

c . Given the
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vevs of Φu,d, ∆ and ∆c,

〈Φu〉 =

(

κu 0

0 0

)

, 〈Φd〉=

(

0 0

0 κd

)

,

〈∆〉 =

(

0 0

vL 0

)

, 〈∆c〉=

(

0 0

vR 0

)

, (2)

the gauge group is broken to U(1)em and the up-type

quark, down-type quark, charged lepton and Dirac

neutrino mass matrices turn out to be Mu = Y u
q κu,

Md = Y d
q κd, Ml = Y u

l κd and MD = Y d
l κu. Mean-

while, the left- and right-handed Majorana neutrino

mass matrices can be obtained from the correspond-

ing mass terms in Eq. (1) once the Higgs triplets ∆

and ∆c acquire their vevs, ML ≈ vLF and MR ≈ vRF .

Integrating out the heavy particles (i.e., the right-

handed Majorana neutrinos and Higgs triplet), one

obtains the effective mass matrix for three light (left-

handed) Majorana neutrinos via the Type-/ seesaw

mechanism [11],

Mν ≈ML−MT
DM−1

R MD ≈ vLF− 1

vR

MT
DF−1MD. (3)

We may find that the same coupling F appears in

both contributions just because of the left-right sym-

metry.

Note that Eq. (3) has a duality property [12]:

given MD, there exist eight possible Higgs triplet

Yukawa couplings which result in the same neutrino

mass matrix. The stability of the duality relation

and some other phenomena based on this have been

investigated recently. In this paper, we perform a

full analysis of the renormalization group equations

(RGEs) of the effective neutrino mass operators. We

write down the β-functions of the effective neutrino

mass operators and discuss the stability of the Type-

/ seesaw mechanism. Lepton-flavor-violating decays

in the supersymmetric left-right model are different

from in the minimal supersymmetric standard model

(MSSM) for the existence of the Higgs triplet Yukawa

coupling F [13, 14]. In this paper, we calculate the

BR(τ → µγ) and BR(τ → eγ) by using the recon-

structed Higgs triplet Yukawa couplings in the super-

symmetric left-right model.

The remaining part of this paper is organized as

follows. In Section 2, we calculate the one-loop RGEs

for the effective neutrino mass operators. Section 3 is

devoted to studying the lepton-flavor-violating pro-

cesses. A summary of our main results is given in

Section 4. Some useful formulas are listed in Appen-

dices A and B.

2 Renormalization group equations of

the effective neutrino mass opera-

tors

We assume that the gauge and discrete left-right

symmetries are both broken by the vev of ∆c at the

high energy scale in our model. As a result, the right-

handed neutrinos and Higgs triplets are much heavier

than other particles. Integrating out the right-handed

neutrinos in the leading-order approximation, one ob-

tains the effective neutrino mass operators, which are

contained in the F-term of the superpotential,

Wκ = −1

4
(κ1)gf l

g
cε

ce(Φu)e1l
g
aε

ab(Φu)b1

−1

4
(κ2)gf l

f
cε

ce(Φd)e1l
f
aε

ab(Φd)b1

−1

4
(κ3)gf l

g
cε

ce(Φu)e1l
f
aε

ab(Φd)b1 +h.c., (4)

where

κ1 = 2
[

(Y u
l )T(vRF)−1Y u

l

]

,

κ2 = 2
[

(Y d
l )T(vRF)−1Y d

l

]

,

κ3 =
[

(Y u
l )T(vRF)−1Y d

l +(Y d
l )T(vRF)−1Y u

l

]

. (5)

Due to the non-renormalization theorem [15], the

RGEs for operators of the superpotential are gov-

erned by the wave function renormalization for the

superfields. At the one-loop level, the wave-function

renormalizaton constants Z are obtained with the di-

mensional regularization via the dimensional reduc-

tion [16],

−(4π)2δZΦu
= 6Tr

[

(Y u
q )†Y u

q

]

+2Tr
[

(Y u
l )†Y u

l

]

−3

5
g2
1 −3g2

2 ,

−(4π)2δZΦd
= 6Tr

[

(Y d
q )†Y d

q

]

+2Tr
[

(Y d
l )†Y d

l

]

−3

5
g2
1 −3g2

2 ,

−(4π)2δZl = 2
[

(Y u
l )†Y u

l + (Y d
l )†Y d

l +FF†
]

−3

5
g2
1 −3g2

2 ,

−(4π)2δZ∆ = 4Tr
[

FF†
]

− 12

5
g2
1 −8g2

2 . (6)

Using the counterterms calculated above and the

technique described in Ref. [17], we obtain the β-

functions,

(

βX ≡µ
d

dµ
X

)
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of the effective mass operators κi (i=1, 2, 3) and the

Higgs triplet Yukawa coupling F ,

16π
2βκ1

= RT ·κ1 +κ1 ·R

+

{

6Tr
[

(Y u
q )†Y u

q

]

− 6

5
g2
1 −6g2

2

}

κ1,

16π
2βκ2

= RT ·κ2 +κ2 ·R

+

{

6Tr
[

(Y d
q )†Y d

q

]

− 6

5
g2
1 −6g2

2

}

κ2,

16π
2βκ3

= RT ·κ3 +κ3 ·R+

{

3Tr
[

(Y u
q )†Y u

q

]

+3Tr
[

(Y d
q )†Y d

q

]

− 6

5
g2
1 −6g2

2

}

κ3,

16π
2βF = RT ·F+F ·R

+

{

2Tr
[

FF†
]

− 9

5
g2
1 −7g2

2

}

F , (7)

where

R≡ (Y u
l )†Y u

l +(Y d
l )†Y d

l +FF†. (8)

Some comments are in order.

1) In calculating the β-functions, we have assumed

M∆ (the mass of the Higgs triplet) to be lighter than

M1, which is the mass of the lightest right-handed

neutrinos. Actually, this assumption is not neces-

sary. One may integrate out νR and ∆ each at its

own mass scale and redefine iteratively the effective

operator, which is more reasonable. Below m∆, the β-

functions of the effective mass operators, which come

from integrating out the Higgs triplet, are similar to

κis.

2) Given the vacuum expectation values of the

Higgs bi-doublets and triplets in Eq. (2), only κ1 gives

rise to masses of the light left-handed neutrinos af-

ter spontaneous electro-weak symmetry breaking. We

just need to calculate the β-function of κ1 when con-

sidering the renormalization group effects of neutrino

mass operators. Besides, all operators in Wκ con-

tribute to the lepton-flavor-violating processes. How-

ever, such processes are strongly suppressed by heavy

masses of the right-handed neutrinos.

3) Below the lightest seesaw scale, the β-function

of the effective neutrino mass operator prossess the

same as that of the Type-. seesaw model in the

MSSM, only up to a replacement Y †

l Yl −→ (Y u
l )†Y u

l +

(Y d
l )†Y d

l .

Due to the renormalization group (RG) evolution ef-

fects between the M∆ and M1 scales, the seesaw for-

mula in Eq. (3) is modified, where two Fs in Type-

. and Type-/ terms are not equal anymore. As a

result, the duality property is slightly broken when

considering the RG evolution effects of F and the

effective neutrino mass operator. Current neutrino

oscillation experiments only give the neutrino mixing

parameters at low energy scale. To investigate lepton

flavor violation effects, we must derive the Yukawa

matrix F , which is the Yukawa coupling constant be-

tween right-handed neutrinos and left-handed lepton

doublet, at the Seesaw scale. It can be obtained by re-

solving the Seesaw formula in Eq. (3), using neutrino

oscillation parameters at that scale. We must run the

RGE of the neutrino mass matrix to the Seesaw scale

to derive neutrino masses and mixing parameters.

3 Lepton flavor violation in the super-

symmetric left-right model

In this section, we first give the analytical for-

mulas to be used for the calculation of the lepton-

flavor-violating processes and then list our numerical

results.

3.1 Analytical formulas

Working on the basis where the sleptons are in

weak eigenstates together with the charginos (neu-

tralinos) in their mass eigenstates, we write down the

interaction Lagrangian of lepton-slepton-chargino in

the following form,

−Lint = +ν̃†
Liχ̃

−
A(CA(i)

LR PR +CA(i)
LL PL)li

+ν̃†
Riχ̃

−
A(CA(i)

RR PR +CA(i)
RL PL)li

+ẽ†

Liχ̃
0
A(NA(i)

LR PR +NA(i)
LL PL)li

+ẽ†
Riχ̃

0
A(N

A(i)
RR PR +N

A(i)
RL PL)li +h.c., (9)

where the coefficients are

CA(i)
LL = gL(OR)A1,

C
A(i)
LR = − gLmei√

2mW cosβ
(OL)A3 +

gLmD
νi√

2mW sinβ
(OL)A4,

CA(i)
RR = gR(OL)A2,

CA(i)
LR = − gLmei√

2mW cosβ
(OR)A3 +

gLmD
νi√

2mW sinβ
(OR)A4,

NA(i)
LL =

gL√
2

[−(ON)A2−(ON)A1 tanθW] ,

NA(i)
LR =

gLmei√
2mW cosβ

[(ON)A3−(ON)A4]

+
gLmD

νi√
2mW sinβ

[(ON)A6−(ON)A5] ,

NA(i)
RL = NA(i)

LR ,
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NA(i)
RR =

gR√
2

[−(ON)A7−(ON)A1 tanθW] . (10)

Here, OL, OR and ON are real orthogonal matrices

that diagonalize chargino and neutralino mass matri-

ces, respectively. Their explicit forms are listed in

Appendix A. tanβ ≡κu/κd is defined.

Let us discuss the branching ratios of the lepton-

flavor-violating processes in the supersymmetric left-

right model. The radiative decays li → lj +γ are in-

duced by the effective operator [18],

elj (iD
γ

LPL +iDγ

RPR)σµν liFµν +h.c., (11)

where e and Fρσ are the charge and the electro-

magnetic field strength, respectively. These oper-

ators are chirality-flipping (dipole) and come from

SU(2)L×U(1)Y-invariant operators with at least one

Higgs field.

In the “mass insertion” method and leading-log

approximations, the coefficients Dγ

L,R can be calcu-

lated [13] and we write down the explicit expression

in Appendix A. The branching ratio of li → lj+γ decay

due to the new contributions is given by

BR(li → ljγ) =
48π

3α

m2
li
G2

F

(|Dγ

L |2

+ |Dγ

R |2)BR(li −→ ljν̄jνi), (12)

where α = e2/(4π), GF is the Fermi constant, BR(τ→
µντνµ)≈ 17% and BR(τ→ eντνe)≈ 18% [19].

In the minimal SUGRA scenario, at the gravita-

tional scale the supersymmetry breaking masses for

sleptons, squarks and the Higgs bosons are univer-

sal, and the SUSY breaking parameters associated

with the supersymmetric Yukawa couplings or masses

are proportional to the Yukawa coupling constants or

masses. Then, the SUSY breaking parameters are

given as

(m2
L)ij = (m2

R)ij = (m2
ν
)ij = δijm

2
0,

m2
Φ̃1

= m2
Φ̃2

= m2
0,

(Au,d
l )ij = (Y u,d

l )ija0,A
ij
F =F ija0,

Bij
ν

= Mνiνj
b0,BΦ = µb0. (13)

Flavor violation in the slepton sector arises from

radiative corrections induced by the flavor-violating

couplings of heavy states populating the theory be-

tween the Planck scale and the electroweak scale. In-

tegrating the one-loop renormalization group equa-

tions [20] for the soft breaking masses m2
L, m2

R and

trilinear Au,d
l in the lowest-order approximation, one

obtains the off-diagonal term for m2
L, m2

R and Au,d
l ,

(m2
L)ij ≈ (m2

R)ij ≈−3m2
0+a2

0

4π2
Rij,

Au,d
l ≈ − 3

4π2
Y u,d

l a0Rij, (14)

where

Rij =
[

Y u
l (Y u

l )† +Y d
l (Y d

l )†
]

ij
lg

(

MP

MR

)

+3(FF†)ijlg

(

MP

M∆

)

.

These off-diagonal terms generate new contributions

in the amplitudes of lepton-flavor-violating processes

[21], such as τ→µγ and τ→ eγ.

3.2 Numerical results

The lepton flavor mixing matrix (UMNS) comes

from the mismatch between the diagonalizations of

the neutrino mass matrix and the charged lepton

mass matrix. The tri-bimaximal mixing pattern [22]

is strongly favored by the solar and atmospheric neu-

trino oscillation measurements,

UMNS =





















2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2





















. (15)

A global analysis of current experimental data yields

the values for the solar mass splitting ∆m2
12 = (8.0±

0.3)× 10−5 eV2 and the atmospheric mass splitting

|m2
23|= (2.5±0.2)×10−3 eV2 [6]. We assume that three

light left-handed Majorana neutrinos are in normal

mass hierarchy (i.e., m1 < m2 < m3), so that m3 ≈
√

|∆m2
23 | ≈ 0.05 eV and m2 ≈

√

∆m2
12 ≈ 0.009 eV.

We also take m1 ≈ 0.001 eV and vL ≈ 0.05 eV, which

are natural values [23].

We assume that at the GUT scale the theory is

given by the supersymmetric SO(10) model, which

contains two 10-dimensional and a pair of 126⊕126

representation Higgs bosons. Then the most general

Yukawa couplings lead to the following mass relation

for the fermions: Mu = MD. We neglect the CKM

relations between the up- and down-type quarks in

our numerical calculations, assuming that the up-type

and down-type quark mass matrices are both diago-

nal. The Dirac neutrino mass matrix turns out to be

MD = diag(mu,mc,mt).

Using these choices and the technique described

in Ref. [12], one obtains eight different solutions for

the triplet Yukawa coupling F through the left-right
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seesaw formula in Eq. (3),

F1 ≈









−0.00169 −0.00349 0.00015

−0.00349 0.51022 −0.51309

0.00015 −0.51309 0.69097









,

F ′
1 ≈









0.06236 0.06316 0.05952

0.06316 0.04995 0.07326

0.05952 0.07326 −0.13080









,

F2 ≈









0.06235 0.06316 0.05950

0.06316 0.04996 0.07515

0.05950 0.07515 0.21616









,

F ′
2 ≈









−0.00169 −0.00349 0.00016

−0.00349 0.51021 −0.51498

0.00016 −0.51498 0.34400









,

F3 ≈









−4 ·10−10 4 ·10−8 6 ·10−6

4 ·10−8 −7 ·10−6 −9 ·10−4

6 ·10−6 −9 ·10−4 −0.1736









,

F ′
3 ≈









0.06067 0.05967 0.05967

0.05967 0.56017 −0.43888

0.05966 −0.43888 0.73374









,

F4 ≈









5 ·10−11 −3 ·10−8 −6 ·10−6

−3 ·10−8 3 ·10−6 9 ·10−4

−6 ·10−6 9 ·10−4 0.17342









,

F ′
4 ≈









0.06067 0.05966 0.05967

0.05966 0.56016 −0.44078

0.05967 −0.44078 0.38678









. (16)

It is easy to check that the duality relation (Fi+F ′
i=

mν/vL) is satisfied very accurately for the solutions

given above.

Now, we present our numerical results of BR(τ→
µ, e + γ) in the parameter space given above. The

experimental upper limits on those branching ratios

are BR(τ→µ+γ) < 6.8×10−8 and BR(τ→ e+γ) <

1.1× 10−7 at 90% C.L. [24] and the sensitivities of

a few planned experiments [25] may reach BR(τ →
e+γ)∼O(10−8) and BR(τ→µ+γ)∼O(10−8). Fig. 1

and Fig. 2 show the BR(τ→ [µ, e]+γ) changing with

m0. We find that the experimentally allowed ranges

of BR(τ → [µ, e] + γ) can be reproduced from all

of these eight different triplet Yukawa couplings in

the chosen parameter space. In addition, curves cor-

responding to F3 and F4 are lapped over with each

other because there is little difference in their numeri-

cal expression. Although eight different Higgs triplet

Yukawa couplings result in the same neutrino mass

matrix through the Type-/ seesaw formula, their

effects on lepton-flavor-violating processes are very

Fig. 1. Illustrative plot of BR(τ→µ+γ) chang-

ing with m0. We take tanβ= 1.5, M∆ =1 TeV

and MR = 20 TeV in our plot. Here, the dot

line corresponds to F1; the dash dot line corre-

sponds to F ′
1; the short dash line corresponds

to F2; the short dash dot line corresponds to

F ′
2; the solid line corresponds to F3 and F4;

the dash line corresponds to F ′
3; the short dot

line corresponds to F ′
4; and the dot horizon-

tal line corresponds to the experimental upper

bound.

Fig. 2. Illustrative plot of BR(τ→ e+γ) chang-

ing withm0. We take tanβ=1.5, M∆ =1 TeV

and MR = 20 TeV in our plot. Here the dash

line corresponds to F1; the dot line corre-

sponds to F ′
1; the dash dot line correspond

to F2; the dash dot dot line corresponds to

F ′
2; the solid line corresponds to F ′

3; the short

dash line corresponds to F ′
4; the short dash

line corresponds to F3 and F4; and the dot

horizontal line corresponds to the experimen-

tal upper bound.
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different. As a result, we may check the stability of

the Type-/ seesaw formula by measuring the branch-

ing ratios of the lepton-flavor-violating τ decays ac-

curately in future experiments.

4 Summary

In addition to the right-handed neutrinos, the

Higgs triplet is another source of the neutrino mass

generation in the Type-/ seesaw model, so the evo-

lution of the neutrino mass matrix is a little different

from that in the Type-. seesaw model. In addition,

the duality property of the Type-II seesaw formula

indicates that there exist eight possible Higgs triplet

Yukawa couplings F , which, for a given MD, result in

exactly the same mass matrix of light neutrinos. In

this article, we have calculated the RGEs for the evo-

lutions of the Type-/ seesaw neutrino mass matrices

from the seesaw scale to the electro-weak scale in the

supersymmetric left-right model. Instead of present-

ing a numerical analysis, we have discussed the stabil-

ity of the Type-/ seesaw model. On the other hand,

the Higgs triplet Yukawa coupling is an important

source for the lepton-flavor-violating τ decays. We

have calculated these eight Yukawa couplings through

the Type-/ seesaw formula and applied them to eval-

uating the branching ratios of lepton-flavor-violating

τ decays. We find that their contributions to the

branching ratios are different and the stability of the

Type-/ seesaw can be checked by measuring rare τ

decay accurately.

In conclusion, the supersymmetric left-right

model supplies an interesting platform for the neu-

trino sector, which could be tested in future LHC and

ILC experiments.
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Appendix A

In this appendix, we consider chargino mixing and

neutralino mixing in the supersymmetric left-right model.

We first write down the λ-φ-A terms of the Lagrangian,

which involve the soft supersymmetry-breaking terms and

the scalar potential [9, 26],

`GH = +i
√

2Tr[(σ ·∆L)†(gLσ ·λL +2gvλv)σ ·∆̃L]+h.c.

+i
√

2Tr[(σ ·∆R)†(gRσ ·λR +2gvλv)σ ·∆̃R]+h.c.

+
i√
2
Tr[Φ†

u(gLσ ·λL +gRσ ·λR)Φ̃u]+h.c.

+
i√
2
Tr[Φ†

d(gLσ ·λL +gRσ ·λR)Φ̃d]+h.c.

+Tr[µ2(σ ·∆̃L)(σ · δ̃L)]+Tr[µ3(σ ·∆̃R)(σ · δ̃R)]

+h.c.+mL(λα
Lλ

α
L + λ̄α

Lλ̄
α
L)+mR(λα

Rλ
α
R

+λ̄α
Rλ̄

α
R)+mv(λvλv + λ̄vλ̄v)

+Tr[µ1(σ1Φ̃uσ1)
TΦ̃d]. (A1)

Substituting the vacuum expectation values of the Higgs

fields from Eq. (2) into Eq. (17), keeping only the terms

involving charged fields, we get

`C =
{

iλ−
R(

√
2gRvR∆̃†

R +gRkdφ̃
†
d)+iλ−

L (
√

2gLvL∆̃†
L

+gLkdφ̃
†
d)+iλ†

RgRkuφ̃
−
u +iλ†

LgLkuφ̃
−
u +4mLλ

†
Lλ

−
L

+4mRλ
†
Rλ

−
R +µ1φ̃

†
uφ̃

−
d +µ1φ̃

−
u φ̃

+
d +µ2∆̃

+
L δ̃

−
L

+µ3∆̃
−
R δ̃

−
R

}

+h.c. (A2)

We consider the chargino mass matrix MC, which is a 6×6

matrix appearing in the chargino mass terms.

`C = −1

2
(ψ+T,ψ−T)

(

0 MT
C

MC 0

)(

ψ+

ψ−

)

+h.c. (A3)

In this model, ψ is defined to stand for the following fields,

ψ+ ≡
(

−iλ+
L ,−iλ+

R, φ̃
+
u , φ̃

+
d ,∆̃

+
L ,∆̃

+
R

)T

, (A4)

ψ− ≡
(

−iλ−
L ,−iλ−

R , φ̃
−
u , φ̃

−
d , δ̃

−
L , δ̃

−
R

)T

. (A5)

Comparing Eq. (19) with Eq. (17), we write down the

explicit expression of MC,

MC =

























4mL 0 0 gLkd

√
2gLvL 0

0 4mR 0 gRkd 0
√

2gRvR

gLku gRku 0 µ1 0 0

0 0 µ1 0 0 0

0 0 0 0 µ2 0

0 0 0 0 0 µ3

























. (A6)

By defining χ−
i =O∗

Rψ
−, χ+ =O∗

Lψ
+, we can diagonalize

MC by 6× 6 orthogonal matrices OR and OL according

to ORMCOT
L = MD

C , where MD
C is a diagonal matrix. It

is tedious to write down the analytical expressions of OL

and OR. Hence we only list their numerical expressions,
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OR ≈

























0 −0.999 −0.002 0 0 −0.009

0.996 0 0.090 0 0 −0.002

0.001 0 0 −1 0 0

−0.075 0.005 0.817 0 0 −0.572

−0.050 −0.008 0.570 0 0 0.820

0 0 0 0 1 0

























, OL ≈

























0 0.196 0 0.001 0 0.981

0.998 0.009 0 0.062 0.001 −0.002

−0.001 0 −0.371 0 0.929 0

−0.034 −0.739 0 0.656 0 0.147

0.053 −0.644 0 −0.752 0 0.129

0 0 0.929 0 0.371 0

























. (A7)

Here, we choose ML = 1 TeV, MR = 20 TeV, µ1 = µ2 = µ3 = 200 GeV, tanβ = 1.5, vL = 0.05 eV and vR = 1010 GeV in

our calculation.

In order to obtain the neutralino part of the Lagrangian, we replace the vevs of the Higgs bosons into Eq. (17),

keeping only the neutral terms,

`N =
{

−i
√

2(λ0
LgL−2λ0

vgV)vL∆̃0
L− i

√
2(λ0

RgR−2λ0
vgV)vR∆̃0

R +i
1√
2
(λ0

RgR−λ0
LgL)κuφ̃

0
1u

−i
1√
2
(λ0

RgR−λ0
LgL)κdφ̃

0
2d +mL(λ0

Lλ
0
L + λ̄0

Lλ̄
0
L)+mR(λ0

Rλ
0
R + λ̄0

Rλ̄
0
R)

+mV(λ0
Vλ

0
V + λ̄0

Vλ̄
0
V)+µ1(φ̃

0
1uφ̃

0
2d + φ̃0

2uφ̃
0
1d)
}

+h.c. (A8)

The neutralino particles are produced in two stages of symmetry breaking [27]. The first stage, the vev vR, is

responsible for giving masses to the heavy neutralinos. The second stage, the vevs κu and κd, are responsible for giving

masses to the light neutralinos. The amount of mixing between heavy and light neutralinos is small, so one can calculate

the neutralino mass eigenstates for both stages as independent cases.

We define ξN,

ξN ≡ (−iλ0
L,−iλ0

R, φ̃
0
1u, φ̃

0
2u, φ̃

0
1d, φ̃

0
2d). (A9)

Then the relevant part in Eq. (24) may be written as

`N =−1

2
ξNMNξ

T
N +h.c., (A10)

where

MN =









































mL 0
−1√

2
gLκu 0 0

1√
2
gLκd

0 mR
1√
2
gRκu 0 0

−1√
2
gRκd

−1√
2
gLκu

1√
2
gRκu 0 0 0 −µ1

0 0 0 0 −µ1 0

0 0 0 −µ1 0 0

1√
2
glκd

−1√
2
gRκd −µ1 0 0 0









































. (A11)

MN is diagonalized by a real orthogonal matrix ON with ONMNOT
N =MD

N . We write down the numerical expression for

ON,

ON =

























0 0.999 0.005 0 0 0.004

−0.995 0.001 −0.088 0 0 −0.061

−0.106 −0.006 0.707 0 0 0.700

0 0 0 −0.707 0.707 0

0 0 0 −0.707 −0.707 0

0.018 0.001 −0.702 0 0 0.711

























. (A12)

Here we choose ML =1 TeV, MR = 20 TeV, µ1 =200 GeV and tanβ= 1.5 in our calculation.
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Appendix B

In this appendix, we write down the formula of Dγ

L,R
1), which is a little different from the formula given in Ref. [13],

Dγ

L = − 1

2(4π)2
Mχ̃0N

A(i)
RR N

A(j)
LL Aii

e (m̄2
ẽ)ij

(

1

m2
ẽRi

−m2
ẽLi

1

m2
ẽRi

−m2
ẽLj

gn(M2
χ̃0/m̄

2
ẽRi

)

m2
ẽRi

+
1

m2
ẽLi

−m2
ẽRi

1

m2
ẽLi

−m2
ẽLj

gn(M
2
χ̃0/m̄

2
ẽLi

)

m2
ẽLi

+
1

m2
ẽLj

−m2
ẽRi

1

m2
ẽLj

−m2
ẽLi

gn(M2
χ̃0/m̄

2
ẽLj

)

m2
ẽLj

)

− 1

6(4π)2
meiN

A(i)
LL N

A(j)
LL

(m̄2
ẽ)ij

m̄2
ẽi
−m̄2

ẽj

(

fn(M2
χ̃0/m̄

2
ẽi

)

m̄2
ẽi

−
fn(M2

χ̃0/m̄
2
ẽj

)

m̄2
ẽj

)

− 1

2(4π)2
Mχ̃0N

A(i)
LR N

A(j)
LL

(m̄2
ẽ)ij

m̄2
ẽi
−m̄2

ẽj

(

gn(M
2
χ̃0/m̄

2
ẽi

)

m̄2
ẽi

−
gn(M2

χ̃0/m̄
2
ẽj

)

m̄2
ẽj

)

+
1

(4π)2
M

χ
−

A
C

A(i)
RR C

A(j)
LL Aii

ν(m̃2
L)ij

(

1

m2
νRi

−m2
νLi

1

m2
νRi

−m2
νLj

gc(M
2
χ̃−
/m̄2

ν̃Ri
)

m2
νRi

+
1

m2
νLi

−m2
νRi

1

m2
νLi

−m2
νLj

gc(M
2
χ̃−
/m̄2

ν̃Li
)

m2
νLi

+
1

m2
νLj

−m2
νRi

1

m2
νLj

−m2
νLi

gc(M
2
χ̃−
/m̄2

ν̃Lj
)

m2
νLj

)

+
1

6(4π)2
meiC

A(i)
LL C

A(j)
LL

(m̄2
ẽ)ij

m̄2
ν̃i
−m̄2

ν̃j

(

fc(M
2
χ̃−
/m̄2

ν̃i
)

m̄2
ν̃i

−
fc(M

2
χ̃−
/m̄2

ν̃j
)

m̄2
ν̃j

)

+
1

(4π)2
Mχ̃−C

A(i)∗
LR C

A(j)
LL

(m̄2
ẽ)ij

m̄2
ν̃i
−m̄2

ν̃j

(

gc(M
2
χ̃−
/m̄2

ν̃i
)

m̄2
ν̃i

−
gc(M

2
χ̃−
/m̄2

ν̃j
)

m̄2
ν̃j

)

, (B1)

Dγ

R = − 1

2(4π)2
Mχ̃0N

A(i)
LL N

A(j)
RR Aii

e (m̄2
ẽ)ij

(

1

m2
ẽRi

−m2
ẽLi

1

m2
ẽRi

−m2
ẽRj

gn(M
2
χ̃0/m̄

2
ẽRi

)

m2
ẽRi

+
1

m2
ẽLi

−m2
ẽRi

1

m2
ẽLi

−m2
ẽRj

gn(M2
χ̃0/m̄

2
ẽLi

)

m2
ẽLi

+
1

m2
ẽRj

−m2
ẽRi

1

m2
ẽRj

−m2
ẽLi

gn(M2
χ̃0/m̄

2
ẽRj

)

m2
ẽRj

)

− 1

6(4π)2
meiN

A(i)
RR N

A(j)
RR

(m̄2
ẽR

)ij

m̄2
ẽRi

−m̄2
ẽRj

(

fn(M2
χ̃0/m̄

2
ẽRi

)

m̄2
ẽRi

−
fn(M2

χ̃0/m̄
2
ẽRj

)

m̄2
ẽRj

)

− 1

2(4π)2
Mχ̃0N

A(i)
RL N

A(j)
RR

(m̄2
ẽR

)ij

m̄2
ẽRi

−m̄2
ẽRj

(

gn(M2
χ̃0/m̄

2
ẽRi

)

m̄2
ẽRi

−
gn(M

2
χ̃0/m̄

2
ẽRj

)

m̄2
ẽRj

)

+
1

(4π)2
M

χ
−

A
C

A(i)
LL C

A(j)
RR Aii

ν(m̃2
R)ij

(

1

m2
νRi

−m2
νLi

1

m2
νRi

−m2
νRj

gc(M
2
χ̃−
/m̄2

ν̃Ri
)

m2
νRi

+
1

m2
νLi

−m2
νRi

1

m2
νLi

−m2
νRj

gc(M
2
χ̃−
/m̄2

ν̃Li
)

m2
νLi

+
1

m2
νRj

−m2
νRi

1

m2
νRj

−m2
νLi

gc(M
2
χ̃−
/m̄2

ν̃Rj
)

m2
νRj

)

+
1

6(4π)2
meiC

A(i)
RR C

A(j)
LL

(m̄2
ẽR

)ij

m̄2
ν̃Ri

−m̄2
ν̃Rj

(

fc(M
2
χ̃−
/m̄2

ν̃Ri
)

m̄2
ν̃Ri

−
fc(M

2
χ̃−
/m̄2

ν̃Rj
)

m̄2
ν̃Rj

)

+
1

(4π)2
Mχ̃−C

A(i)
RL C

A(j)
RR

(m̄2
ẽR

)ij

m̄2
ν̃Ri

−m̄2
ν̃Rj

(

gc(M
2
χ̃−
/m̄2

ν̃Ri
)

m̄2
ν̃Ri

−
gc(M

2
χ̃−
/m̄2

ν̃Rj
)

m̄2
ν̃Rj

)

, (B2)

1)we do not consider the contributions of the double charged chargino mediated diagrams, since their contributions are very

small.
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where the loop functions are

fn(x) = − 1

2(1−x)4 (2+3x−6x2+x3 +6xlgx), gn(x)=− 1

(1−x)3 (1−x2+2xlgx),

fc(x) = − 1

2(1−x)4 (2+3x−6x2+x3 +6xlgx), gc(x)=
1

2(1−x)3 (3−4x+x2+2lgx). (B3)
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