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1 Introduction

The strong suppression of high-pT hadrons has

been observed experimentally at the Relativistic

Heavy Ion Collider (RHIC) [1–5]. The dominant dy-

namical mechanism of this suppression is commonly

understood as that hard partons produced in A-A

collisions at RHIC propagate through highly excited

matter (quark gluon plasma, QGP) and lose virtual-

ity, which causes pT degradation by interaction with

the medium before hadronization in the vacuum [6–

9]. The interaction of partons with the medium af-

fects high transverse momentum hadron production,

thus it can be reflected by the parton fragmentation

function. In this paper, we study the equivalence of

the medium-evolved fragmentation function (ACSX)

[10, 11] and the quenching weight fragmentation func-

tion (QW) [12], which can provide useful information

on the properties of the QGP.

One motivation of this paper is the imminence of

the Large Hadron Collider (LHC) heavy-ion program,

in which real high pT jets will be measured for the first

time. This will provides a good method of inspecting

the medium modified fragmentation function. It is

known that the ACSX provides insight to the parton

energy loss at RHIC energies and the ACSX fragmen-

tation function is widely used at LHC energies, espe-

cially in the LHC/ALICE heavy-ion collision simula-

tion program (such as Q-Pythia). We will show that

the quenching weight fragmentation functions are a

limiting case of the medium-evolved fragmentation

functions and they are equivalent to each other in

the high-Q2 limit. We present a detailed derivation

of the equivalence of the ACSX and QW. We wish to

note that, although our ultimate target is to study

LHC physics, our work can also find applications in

RHIC physics.

2 Quenching weights

When a hard parton passes through a hot and

dense QCD medium, it loses energy via the emis-

sion of gluons due to medium-induced effect. The

medium effect can modify the parton fragmentation

process [13–15]. One of the most popular methods to

take into account the medium effect is the quenching

weight fragmentation function in which the emission

parton energy distribution is a Poisson distribution
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We know that the probability distribution P (ε) has

two components, a discrete part and a continuous

part, with the form [6]

P (ε) = p0δ(ε)+p(ε), (2)

where [12, 14]

p0 = exp

[

−

∫
dω

∫
dk⊥

dImed

dωdk⊥

]

, (3)

p(ε) = p0

∞
∑

n=1

n
∏

i=1

∫
dωi

∫
dk⊥i

dImed

dωidk⊥i

δ

(

ε−

n
∑

j=1

ωi

E

)

.

(4)

Based on the above formulae, one can get the quench-

ing weight fragmentation function

Dmed(x,t) ' p0(t)D
vac(x,t)

+

∫
dε

1−ε
p(ε)Dvac

(

x

1−ε
, t

)

. (5)

3 Medium-evolved fragmentation

function

It is well known that the evolution equation of

fragmentation function D(x,t) is the DGLAP equa-

tion

t
∂
∂ t

D(x,t) =

∫1

x

dz

z

αs

2π

P (z)D
(x

z
,t
)

, (6)

where P (z) is a splitting function which describes the

probability of a parton branching into two daughter

partons with fractions of momenta z and 1− z. To

simplify the computation, we use the integral format

of DGLAP equation (see Ref. [16])

D(x,t) = ∆(t)D(x,T )

+∆(t)

∫t

T

dt1

t1

1
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,

(7)

where ∆(t) is the Sudakov form factor

∆(t) = exp

[

−

∫t

T

dt′

t′

∫
dz

αs(t
′,z)

2π

P (z,t′)

]

. (8)

The first term on the right-hand side of Eq. (7) corre-

sponds to the contribution with no splittings between

T and t while the second one gives the evolution when

some finite amount of radiation is present.

3.1 Medium-modified splitting function and

Sodakov factor

We suppose the medium modification to the total

splitting function as [12]

P tot(z) = P vac(z)+∆P (z,t). (9)

To get the medium modified splitting function, we

first derive the vacuum splitting function, and then

we use an analogous method to the vacuum case to

get the medium modified splitting function. Let us

look at the vacuum component of the energy distri-

bution of emitted gluons [17]

dIvac
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⊥

=
αs

2π

1

k2
⊥

P vac(z), (10)

where

P
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2
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Then we get
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⊥
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2πk2
⊥

αs

dIvac

dzdk2
⊥

. (12)

Similarly, we have

∆P (z,t)'
2πt

αs

dImed

dzdt
. (13)

Substituting Eq. (9) into Eq. (8), we can get the

medium modified Sudakov factor
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3.2 Medium-evolved fragmentation function

Taking the medium modified splitting function

and Sodakov factor into Eq. (7), one can get

D(x,t)
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Here, we mark t as t0 for convenience. Using the

vacuum fragmentation function
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and initial condition

Dtot(x,T ) = Dvac(x,T ), (17)

Eq. (15) becomes
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After some algebra, we get a simplified medium-

evolved fragmentation function as

Dtot(x,t) ' ∆med(t)Dvac(x,t)

+∆med(t)
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We note that to get Eq. (19) we use a trick
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4 Equivalence of two medium-

modified fragmentation functions at

high Q2 limit

In the high-Q2 limit, we show the equivalence of

the quenching weight fragmentation function [18]
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and the medium-evolved fragmentation function
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In order to get the quenching weight fragmenta-

tion function from the medium-evolved fragmentation

function in the high-Q2 limit, let us look at the the

modified Sodakov factor in Eq. (24); we have

∆med(t) = exp

(

−
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Now we can see that the first term in Eq. (24) is the

same as the first term in Eq. (21) quenching weight

fragmentation function. To further simplify Eq. (24),

we substitute ∆P from Eq. (13) and ∆med from

Eq. (25) into Eq. (24), then we obtain the quench-

ing weight fragmentation function from the medium-

evolved fragmentation function
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The above equation is exactly the same as the

quenching weight fragmentation function. Up to

now we have shown the equivalence of the quench-

ing weight fragmentation function and the medium-

evolved fragmentation function from the theoretical

point of view in the high-Q2 limit. We also study the

Fig. 1. Ratio of the medium modified frag-

mentation function to the vacuum fragmen-

tation function with transport coefficient

q̂=1 GeV2/fm, path length L =6 fm and jet

energy Ejet=40 GeV, where z is the energy

fraction, the ratio of the energy of the final

particle to the energy of the jet (or parton).

The subscript g is for gluon.

Fig. 2. Ratio of the medium modified frag-

mentation function to the vacuum fragmen-

tation function with the same characteristic

as for the plot in Fig. 1 except jet energy

Ejet=100 GeV, where z is the energy fraction,

the ratio of the energy of the final particle to

the energy of the jet (or parton). The sub-

script g is for gluon.

numerical computation of their equivalence, which is

shown in Fig. 1 and Fig. 2. Fig. 1 and Fig. 2 show the

ratio of the medium modified fragmentation function

to the vacuum fragmentation function for gluons onto

pions computed with Ejet = 40 GeV, q̂ = 1 GeV2/fm,

L = 6 fm and Ejet= 100 GeV, q̂ = 1 GeV2/fm,

L = 6 fm respectively. We can see the discrepancy

between QW and ACSX decreasing with increasing

Q2. The ratio of the QW and ACSX is plotted in

Fig. 3. It tells us that the QW and ACSX are equiv-

alent to each other in the high-Q2 limit.

Fig. 3. Ratio of QW to ACSX fragmentation

function for gluons onto pions computed with

Ejet =100 GeV, q̂ = 1 GeV2/fm and L = 6 fm,

where z is the energy fraction, the ratio of the

energy of the final particle to the energy of the

jet (or parton).

5 Discussion

It is known that the energy distribution of emit-

ted gluons in the QW formalism is a Poisson distri-

bution, which is computed in the eikonal approxima-

tion. In the QW formalism, the multiple gluon ra-

diation is considered to be independent. The QW

separately treats the vacuum and medium contribu-

tion to the parton shower evolution, the vacuum ra-

diation occurring after the ‘medium’ radiation and

taking place in time after the fast parton leaves the

medium, which looks artificial. The ACSX formal-

ism treats the medium and vacuum contribution to
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the shower development on the same footing, which

ensures the parton energy momentum conservation

during evolution and takes into account the virtual-

ity evolution based on the DGLAP evolution equa-

tion. These advantages enable the ACSX to have

wider applications.
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