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Kinematics in Randers-Finsler geometry and secular

increase of the astronomical unit *
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Abstract: Kinematics in Finsler space is investigated. It is shown that the result based on the kinematics

with a special Finsler structure is in good agreement with the reported value of the secular trend in the

astronomical unit, dAU/dt = 15±4[m/century]. The space deformation parameter λ in this special structure

is very small, with a scale of 10−6, and should be a constant. This is consistent with the reported value of an

anomalous secular eccentricity variation of the Moon’s orbit.
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1 Introduction

Rapid technological progress has made astronom-

ical observations more and more accurate. New phys-

ical phenomena have appeared, which cannot be ex-

plained by conventional physical mechanisms. The

most well-known among them is the accelerated ex-

panding universe [1] and the flat rotational velocity

curves of spiral galaxies [2]. The astronomical unit

(AU) is the fundamental and standard scale in astron-

omy. The latest planetary ephemerides [3] presented

an accurate value of AU with a tiny error

1[AU ] = 1.495978706960×1011±0.1[m]. (1)

However, recent reports from Krasinsky and Brum-

berg [4] and also from Standish [5] show a positive

secular trend in AU as dAU/dt = 15±4 [m/century].

These authors have analyzed all available radiomet-

ric measurements on distances between the Earth and

the inner planets, including observations of Martian

landers and orbiters. This value is about 100 times

larger than the current determination error of AU [3].

The theoretical value of the round-trip time of radar

signal is given as

ttheo =
dtheo[AU ]

c
, (2)

where dtheo is the interplanetary distance obtained

from ephemerides and c is the speed of light. The

secular trend was obtained by the following formula

ttheo =

dtheo

[

AU +
dAU

dt
(t− t0)

]

c
, (3)

where t0 is the initial epoch. Currently, none of the

theoretical predictions is consistent with the time-

dependent term
dAU

dt
(t− t0). To explain this fact,

physicists have made several attempts, such as the

effects of cosmic expansion [4, 6, 7], the time varia-

tion of the gravitational constant [4], the mass loss of

the Sun [4, 8], and the influence of dark matter on

light propagation in the solar system [9]. However,

none of them seems to be successful. Recently, one

sound model has been proposed [10]. It assumes the

existence of some tidal interactions that transfer an-

gular momentum from the Sun to the planet’s system,

and made use of the conservation law of total angular

momentum to explain the secular trend in AU . This

model needs more work before it can be considered

to be viable.

As mentioned above, general relativity also en-

counters problems. Analysis of the data from Pi-
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oneer 10 and 11 spacecraft shows that an anomaly

acceleration exists in the solar system, which can-

not be explained by Newtonian gravity and general

relativity [11]. Finsler geometry is a natural gener-

ation of Riemann geometry. The gravitational the-

ory based on Finsler geometry provides a reason-

able method to solve the problems mentioned above.

Gravity in Finsler space has been studied for a long

time [12–15]. Considering spacetime to be Finslerian

one may solve these anomalous phenomena in cosmol-

ogy. In a previous paper [16], we proposed a modified

Friedmann model based on the Einstein equations in

Finsler space, which guarantees an accelerated ex-

panding universe without invoking dark energy. Also,

in the framework of Finsler geometry, the flat rota-

tion curves of spiral galaxies can be deduced naturally

without invoking dark matter [17]. Special relativity

in Randers space (a special kind of Finsler space) [18]

was investigated [19]. We found that the anomalous

acceleration observed by Pioneers 10 and 11 corre-

sponds to a special structure of Randers space [20].

In this paper, we discuss the secular trend in AU

in the framework of Finsler geometry. We note the

difference between metrics in Finsler geometry and

Riemann geometry. In Sec. 2, we briefly review the

basic notation of Finsler geometry. The length of the

unit tangent sphere in the Finsler manifold is investi-

gated. In Sec. 3, the secular trend of AU is described

in terms of Finslerian language. The area of the unit

tangent sphere in the Finsler manifold is given. The

connection between the secular trend of AU and the

anomalous secular eccentricity of the Moon’s orbit is

proposed. In Sec. 4, we discuss the Lorentz violation

induced by Finsler structure.

2 The length of the unit tangent

sphere in the Finsler manifold

The metric in Riemann geometry is a function of

position. However, this is not the case in Finsler ge-

ometry, where the metric is a function of both po-

sition and velocity. Finsler geometry is based on

the so-called Finsler structure F with the property

F (x,λy) = λF (x,y), where x ∈ M represents posi-

tion y ∈ TxM represents velocity, and M is an n-

dimensional manifold. The Finslerian metric is given

as [21]

gµν ≡
∂

∂yµ

∂
∂yν

(

1

2
F 2

)

. (4)

Then, gµν defines a metric

gµνdyµ⊗dyν (5)

on the punctured tangent space TxM\0. This met-

ric is a part of a Sasaki metric [22]. It admits the

unit tangent sphere (or indicatrix) IxM ≡{y∈TxM :

F (y) = 1} as a smooth manifold. Topologically, IxM

is diffeomorphic to the unit sphere Sn−1 in Rn. The

volume form of the indicatrix IxM is

√
g

n
∑

µ=1

(−1)µ−1 yµ

F
dy1∧·· ·∧dyµ−1∧dyµ+1∧·· ·∧dyn, (6)

where g denotes the determinant of the metric gµν .

All the trajectories of the planets in the solar

system lie almost in the same plane; the eccentric-

ity of the planets (excluding Mercury and Pluto) is

very small. Thus, their trajectories can be consid-

ered as circular orbits embedded in three-dimensional

space. It is well known that in Euclidean space the

length of a unit circle equals 2πE or the value of

2×3.1415926 · · ·. However, in Finsler space it is typi-

cally not equal to 2×3.1415926 · · · . Instead, as men-

tioned in Formula (6), the 2-dimensional indicatrix

I2
xM has length element

ds =

√
g

F

(

y1 dy2

dt
−y2 dy1

dt

)

dt, (7)

where t is a real parameter. Then, the length of the

indicatrix I2
xM is

L≡
∫

F=1

ds. (8)

Here, we confine the Finsler structure F as Randers

type

F =
√

(y1)2 +(y2)2 +λy1, (9)

where the parameter λ, in general, is a function of

positions. We introduce polar coordinates on I2
xM ,

y1 = r cosφ and y2 = r sinφ. The determinant of n-

dimensional Randers space is given as [21]

det(gµν) =

(

F

α

)n+1

det(aµν), (10)

where α =
√

(y1)2 +(y2)2 and aµν is the metric of α.

One should notice that F equals constant 1 in the in-

dicatrix I2
xM ; the determinant g in polar coordinates

is

g =

(

1

r

)3

. (11)

Thus, the length L is of the form

L =

∫2πE

0

1√
1+λcosφ

dφ

=
4√

1+λ

∫
π/2

0

dθ
√

1− 2λ

1+λ
sin2 θ

, (12)
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where θ = φ/2. In fact, the second integral in the

above equation is a complete elliptic integral of the

first kind. Here, we can see from the integral (12) that

the length L equals 2πE only if λ takes the value 0.

Since the modification on Newtonian gravity is tiny,

we suppose that λ is very small. Hence, to second

order in λ, the length can be derived as

L =

∫2πE

0

(

1− λ

2
cosφ+

3λ2

8
cos2 φ

)

= 2πE

(

1+
3λ2

16

)

. (13)

If one sets λ = 0.001, the numerical result of L/2π−1

is 1.875×10−7. This result is consistent with the ap-

proximate expression (13). The equation (13) tells us

that the value of π in Finsler geometry is

πF = πE

(

1+
3λ2

16

)

. (14)

At the end of this section, we must point out that

the length

L =

∫b

a

(

√

gµν

dyµ

dt

dyν

dt

)

dt

of the indicatrix IxM is different from∫b

a

F

(

x,
dx

dt

)

dt

defined in Finsler space M . However, the value of π

derived from the length element
√

gµνdyµdyν is still

suitable for a Finsler space of Landsberg type. The

Gauss-Bonnet theorem [23] in a Finsler space of

Landsberg type reads:

1

L

∫
M

K
√

gdx1∧dx2 = χ(M), (15)

where (M,F ) is a compact connected Landsberg sur-

face, K is the Gaussian curvature of the Finsler sur-

face, χ(M) is the Euler characteristic of M and L

is the length of indicatrix IxM . The Euler charac-

teristic χ(M) of S2 equals 2; by making use of the

Gauss-Bonnet theorem (15), we obtain that∫
S2

K
√

gdx1∧dx2 = 2L = 4πF. (16)

Therefore, the volume of the surface of a unit sphere

on a Landsberg surface is 4πF. This means that

the πF derived from indicatrix IxM is still vaild

on a Landsberg surface. The Finsler structure

F =
√

(y1)2 +(y2)2 + λy1 we used is of Landsberg

type, with λ constant. Ref. [21] gave a definition

of the Landsberg space. A Finsler structure F =
√

(y1)2 +(y2)2 + λy1 is of Landsberg type, if λ is a

constant.

We give a detailed discussion about the volume

on a Finsler space in the appendix.

3 The Sun-planet system and Earth-

Moon system

In Newtonian gravity, the orbital angular momen-

tum of a planet is conserved. In other words, Kepler’s

second law is valid. The line joining a planet and the

Sun sweeps out equal areas over equal intervals of

time,
dA

dt
= J/2m.

Where A is the areas, J is the orbital angular mo-

mentum and m is the mass of the planet. However, a

report from Krasinsky and Brumberg [4] implies that

over equal intervals of time the area swept out by

the line joining a planet and the Sun increases. Un-

like the explanation of Miura [10], we attribute this

phenomenon to the different value of π in Finsler ge-

ometry. In a Finsler space of Randers type, the area

S of a disk with boundary (F = R) is given as [23]

S =

∫
F=R

√
gdx1∧dx2. (17)

The above section shows that the value of π should

be modified in Finsler spacetime. Since the deforma-

tion parameter λ is small enough, the formula (17)

can have the following form

S ≈πFR2. (18)

Then, the difference between the areas of disks in Rie-

mann geometry and Finsler geometry is

δA≡πFR2−πER2 =
3λ2

16
πER2. (19)

On the other hand, the result of Krasinsky and Brum-

berg means Kepler’s second law is violated. Since the

anomaly effect is very small, the angular momentum

J can be taken approximately as J ≈m
√

GM�R (de-

rived in Newtonian gravity). Then, we get

d2A

dt2
=

J̇

2m
=

√

GM�/R

4
Ṙ, (20)

where the dot denotes derivative respect to time and

M� is the mass of the Sun. Hence, the increased area

of the disk in one orbital period of a planet is

δA =
1

2

d2A

dt2
T 2 =

(

πEṘ

2
√

GM�/R

)

πER2, (21)

where

T = 2π

√

R3

GM�
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is the orbital period of the planet and we used the

Kepler’s third law to get the second equality of (21).

The secular trend of AU means the area swept out

by the line joining a planet and the Sun is increasing

over equal intervals of time. The length difference be-

tween Finsler space and Riemannian space may relate

to this phenomenon. If an astronomical measurement

is carried out in the framework of Finsler geometry,

this anomaly should vanish. Combining the equations

of (19) and (21), we obtain

λ =

√

√

√

√

8πṘ

3

√

R

GM�

=

√

4Ṙ

3R
T. (22)

In the second equality of the above equation, we used

Kepler’s third law as an approximation. Here, by tak-

ing the average value of dAU/dt, we list the values of

the λ for each planet of the solar system in Table 1.

Table 1. Values of the semi-major axis of plan-

etary orbits aPL and orbital periods of planets

TPL given in Ref. [3]. The space deformation

parameter λ, referring to the inner planets, is

listed.

planets aPL(AU) TPL/years λ(10−6)

Mercury 0.38709893 0.240840253 0.910799787

Venus 0.72333199 0.615171854 1.064875317

Earth 1.00000011 1.0 1.154700475

Mars 1.52366231 1.880815968 1.282915811

The values of λ given in Table 1 are very close

for the inner planets. One should note that the an-

alyzed data of distances [4] are in the range of the

inner planets and Martian landers and orbiters. This

fact implies that the space deformation parameter λ

should be a constant in the solar system. Calculating

the average value of λ listed in Table 1, we set it as

the value of the constant parameter λ = 1.10×10−6.

A recent orbital analysis of Lunar Laser Ranging

(LLR) [24] shows an anomalous secular eccentricity

variation of the Moon’s orbit (0.9± 0.3)× 10−11/yr,

equivalent to an extra 3.5 mm/yr in perigee and

apogee distance [25]. By supposing the variation of

the distance from the center to the focus and the semi-

major axis is the same for the Moon’s orbit, namely

δa = δc, we obtain

δa =
aδe

1−e
. (23)

Here, a denotes the semi-major axis and e denotes

the eccentricity. By making use of equation (23) and

the observation data of LLR, we obtain the secular

variation of Moon’s orbital semi-major axis as

δa = 3.62±1.20 mm/yr. (24)

Under the premise that λ is constant, and by mak-

ing use of Equation (22), we obtain the secular varia-

tion of Moon’s orbital radius ṘM = 4.66 mm/yr. This

result is consistent with Formula (24). Thus, our hy-

pothesis that the parameter λ is constant is supported

by the observation of LLR.

The uniform space deformation means that the

secular trend of planetary orbits is ṘPl ∝R−1/2. We

list the values of ṘPl for each planet of the solar sys-

tem in Table 2. By making use of Equation (23), we

list the secular eccentricity variation of each planet in

Table 2. We hope this can be tested in future astro-

nomical observations.

Table 2. For the case of uniform space defor-

mation (λ = 1.10×10−6), the secular trend of

each planet orbit is listed. The secular eccen-

tricity variation of each planet is also listed.

planets ṘPL/(m/century) ePL δePL[10−11/yr]

Mercury 21.9 0.206 0.299

Venus 16.0 0.007 0.146

Earth 13.6 0.017 0.089

Mars 11.0 0.093 0.043

Jupiter 5.97 0.048 0.007

Saturn 4.41 0.056 0.003

Uranus 3.11 0.047 0.001

Neptune 2.48 0.009 0.0005

Pluto 2.17 0.250 0.0003

4 The Lorentz violation in Finsler

space

Rotational symmetry in Randers space is broken.

This is consistent with the phenomena of the secular

trend of AU . In recent years, the issue of Lorentz vi-

olation (LV) has been reconsidered in light of several

different “quantum gravity” (QG) scenarios leading

to Lorentz violation [26]. In most QG models, the LV

is described in terms of the modified dispersion rela-

tions. These modified dispersion relations (MDR) for

elementary particles can be cast in the general form

E2 = m2 +p2 +D(p,µ,M)

= m2 +p2 +

∞
∑

n=1

αn(µ,M)pn, (25)

where p =
√

|~p |2, µ is a particle mass-scale, αn are di-

mensional coefficients and M denotes the relevant QG

scale. Girelli, Liberati and Sindoni [27] showed that

the MDR can be incorporated into the framework of

Finsler geometry. The symmetry of the MDR was
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described in the Hamiltonian formalism. We have

shown that the symmetry of Randers space gives rise

to a modified dispersion relation with characteristics

of Lorentz Invariance violation [19].

However, studying modifications of particle dis-

persion relations suffers from some drawbacks [28].

One is that MDR can only describe changes in the

free propagation of particles. The other one is cer-

tain choices of MDR which may be unphysical. The

MDR pµpµ = m2+aµpµ gives Lorentz-violating prop-

erties that depend on the preferred vector aµ, but in

fact they are unobservable because aµ can be elimi-

nated via a physically irrelevant redefinition of energy

and momentum. Also, in the application of the effec-

tive theory aµ can be eliminated by introducing a field

redefinition by a phase exp(iaẋ) [29].

We must point out that the MDR given in the

above paragraph is the same as the MDR [19] in Ran-

ders space. However, the LV effect of Randers space

is indicated in this paper. This is similar to the fa-

mous Aharonov–Bohm effect: a unphysical electro-

magnetic four-potential at the classical level has ob-

servable effect at the quantum level. The unphys-

ical MDR involved in Randers space may have an

observable effect. It may be the source of the secular

trend of AU . Our approach approximately explains

the secular trend of AU and the anomalous secular

eccentricity variation of the Moon’s orbit.

One should note that the present experiment con-

straint on LV is carried out in a small area (or small

scale). Large-scale observations of indicating or con-

straining the LV are very few. The secular trend of

AU and the anomalous secular eccentricity variation

of the Moon’s orbit are two large-scale constraints on

LV, and can be explained in the framework of Finsler

geometry.

The direct and most efficient way to describe the

LV is to investigate the isometry group of the Randers

metric. A detailed investigation on the symmetry of

Randers space and the LV is given in our work [30].

We would like to thank Prof. Z. Shen C. J. Zhu,

H. Y. Guo and C. G. Huang for useful discussions.

Appendix A

Volume on a Finsler space

In this paper, we have used the modified angle πF to

calculate the volume of a unit disc. One may ask why the

volume of physical space can be described by the modified

angle πF, which is deduced from the unit tangent sphere

or the indicatrix. In this appendix, we present a brief in-

troduction to the concept of volume in a Finsler space.

This can help to solve the confusion mentioned above.

First of all, there are two canonical volume forms on

a Finsler space. Both reduce to the Riemannian volume

form when the Finsler metric becomes Riemannian [31].

The first one is the Hausdorff volume. It is of the form

dVF ≡σF(x)θ1∧· · ·∧θn, (A1)

where

σF(x)≡ Vol(Bn)

Vol(Bn
x )

and θ is the basis for cotangent space T ∗
x M . Here, “Vol”

denotes the Euclidean volume, B is an n-dimensional unit

sphere and Bn
x is a bounded open strongly convex open

subset in R
n. To study the volume on a hypersurface, one

should involve a co-area formula to set a relation between

the induced volume on the hypersurface and the volume

on the manifold (for a strict mathematical description,

see, for example, Ref. [31]). While the Finsler structure

is of Randers type (9), the unit circle in the Finsler man-

ifold M can be described as

(1−λ2)2
(

y1 +
λ

1−λ2

)2

+(1−λ2)(y2)2 =1. (A2)

Reparameterizing the equation for the unit circle, we get

y1 =
1

1−λ2
cosφ− λ

1−λ2
, y2 =

1√
1−λ2

sinφ. (A3)

Then, F

(

dy1

dt
,
dy2

dt

)

is of the form

F

(

dy1

dt
,
dy2

dt

)

=

√

(

λ

1−λ2

)2

sin2 φ+
1

1−λ2

− λ

1−λ2
sinφ. (A4)

Thus, the volume of the indicatrix of the unit circle in

Randers space (9) induced by the Hausdorff volume form

is given as

VolF(M) =

∫2πE

0

√

(

λ

1−λ2

)2

sin2 φ+
1

1−λ2
dφ

' 2πE

(

1+
3

4
λ2

)

. (A5)

Here, we have used the small λ approximation to get the

second equation of (A5).
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The second volume form is the one we introduced in

section 2. One can find that the result for two different

volume forms are almost the same. If we use the Haus-

dorff volume to describe the physics discussed above, we

will obtain a similar result. Therefore, we can reasonably

suggest that the secular trend of planetary orbits and sec-

ular eccentricity variation of the Moon’s orbit both have

a Finslerian origin. The only difference is that the value

of geometrical parameter λ used is one half of ours.

In mathematics, the second volume form is used to

give a definition of angles on a metric space. Thus, we

adopt the modified π = πF to describe the difference

between the Riemannian volume and Finslerian volume.

Using of πFR2 to describe the area of a disc is accept-

able, since we have already supposed that the deviation

of Finsler space from Riemann space is very small.
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