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Are operators describing b→ sγ? *
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Abstract: The operators of b → sγ, b → sl+l− are usually regarded as being sufficient to describe b → sγγ,

b→ sl+l−γ with the statement that contributions from diagrams without an effective vertex b→ sγ to processes

b → sγγ and b → sl+l−γ are negligible. In this work we present a comprehensive analysis of the transition

b→ sγγ and find that 1) Effects due to off-shell quarks in vertex b→ sγ on b→ sγγ are large; 2) Contributions

from diagrams without an effective vertex b→ sγ to b→ sγγ are not negligible compared with others; 3) These

effects cancel each other out exactly, so the operators of b→ sγ can safely be used to describe b→ sγγ.
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1 Introduction

As is well known, the flavor-changing neutral-

currents (FCNC) induced B-meson rare decays pro-

vide an ideal opportunity for extracting information

about the fundamental parameters of the Standard

Model (SM) and some hadronic parameters in QCD,

such as the CKM matrix elements. The meson decay

constant fB providing information about heavy me-

son wave functions. Since these decays occur in the

SM only through loops, they also play an important

role in testing higher-order effects in the SM and in

searching for physics beyond the SM [1, 2].

Theoretical predictions for inclusive decays B →

Xsγ(γ), B → Xs l+l−(γ) and exclusive decays Bs →

γγ, Bs → l+l−(γ) and B → K(K∗)l+l− have been

studied extensively by many authors in the frame-

work of the SM and new physics [1–3]. Among these

works, obtaining effective Hamiltonians for b → sγ,

b → s l+l− is regarded as the fundamental research,

with the following assumptions [2, 4]: i) Effective

Hamiltonians for b → sγ, b → s l+l− can be applied

directly to the processes as Bs → γγ, Bs → l+l−(γ)

and ii) the operators included in effective Hamiltoni-

ans are sufficient to describe the processes in models

that are without particles much lighter than W bo-

son. Our arguments are:

1) Effective Hamiltonians are obtained for on-shell

quarks. Assumption i) seems inconsistent unless the

off-shell quarks’ effects on b → sγγ, b → s l+l− are

small and can be neglected;

2) Some diagrams without an effective vertex

b → sγ also contribute to b → sγγ and b → s l+l−γ.

Even contributions coming from diagrams with an-

other photon attached to internal lines are strongly

suppressed by a factor m2
b/m2

W as stated in some pre-

vious works [2]; contributions from the diagrams with

WWγγ interaction in the SM are surely comparable

to others.

In this paper, we present a comprehensive calcu-

lation for b→ sγγ at a matching scale. Based on the

calculation, we will prove the arguments and point

out that the off-shell quarks’ effect and the contribu-

tions from diagrams without a b → sγ vertex cancel

out each other exactly so the operators of b → sγ

can be used safely to describe b→ sγγ. Although the

conclusion can be drawn by using Low’s low energy

theorem [4], this work is useful in deepening our un-

derstanding of B physics and is thus valuable.

2 Effective Hamiltonian for b→ sγ

Let us start with the calculation of an effective
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Fig. 1. Self energy (left) and triangle (right) Feynman diagrams for b → sγ. The wavy and dashed lines in

the figure stand for the W± boson and corresponding G± in Rξ with the ξ = 1 gauge, respectively.

vertex of b→ sγ at a leading order at matching scale

in general. We will adopt a naive dimensional regu-

larization with an anticommuting γ5 scheme and the

non-linear Rξ with a ξ = 1 gauge for simplification

[5]. This special gauge-fixing term guarantees explicit

electromagnetic gauge invariance throughout the cal-

culation, not just at the end, because the choice elim-

inates the γW±G± vertex in the Lagrangian where G

is the charged Goldstone particle.

We first considered the self-energy diagrams with

W and G in loops and expressed them as

−iΣS =
g2

2

i

16π2

∑

j=u,c,t

VjbV
∗

js [A1(p) 6pPL

−mbA2(p)PR], (1)

where

δj =
m2

j

m2
W

,

A1(p) = (2+δj)B1(p), A2(p) = B0(p) and Bi (p) = Bi

(p, mj, mW) are loop functions [6]. The effective ver-

tex of b(p1)→ s(p2)γ(k) from self-energy diagrams is

then written in a general form:

Γ S,µ
b→sγ =

g2

2

1

16π2
e
∑

j

VjbV
∗

js

[

fS
1 γ

µPL +fS
2 (6p 1γ

µ 6p 1

+ 6p 2γ
µ 6p 2)PL +fS

3 6p 1γ
µ 6p 2PL

+fS
4 6p 2γ

µ 6p 1PL +fS
5 mbp

µ
1PR

+fS
6 mb 6p 2γ

µPR +fS
7 mbγ

µ 6p 1PR

]

, (2)

For on-shell quarks, Eq. (2) has a simple form:

V S
b→sγ = −Qd

g2

2

1

16π2

∑

j

VjbV
∗

jsγ
µPL

× [A(p1)+A2(p2)−A2(p1)] , (3)

where Qd = ede is the down-type quark charge, and s

quark mass is neglected.

Now we calculate the triangle diagrams’ contribu-

tion with the same expression as Eq. (2) except that

the coefficients fS
i are replaced by fT

i . All coefficients

can be found in Table 1.

Table 1. Coefficients fi in the expressions of Eq. (2) and Eq. (6) with C = C (p1, p2, mW, mj, mj) and

Ĉ = C (p1, p2, mi, mW, mW).

fS
1 −ed

[

(2+δj)B1(p1)+
B1(p2)p2

2−δjB0(p2)m2
b

(p2
2
−m2

b
)

]

fT
1 (2+δj)

[

1

2
eu(−2m2

j C0 +C24−1)−
1

2
Ĉ24 +(Ĉ11−3Ĉ23)(p2

1 +p2
2)

]

fS
2 0 fT

2 (2+δj)[eu(C11−2C23)+(Ĉ11−2Ĉ23)]

fS
3 0 fT

3 eu[4C11−2C0−(2+δj)C23]−4Ĉ11

fS
4 0 fT

4 eu[δj(2C11 −C0)−(2+δj)C23 ]+4Ĉ11

fS
5 0 fT

5 −2δj(2euC11 + Ĉ0−2Ĉ11)

fS
6 −ed

(2+δj)B1(p2)−δjB0(p2)

(p2
2−m2

b)
fT
6 euδjC0

fS
7 edδjB0(p1)/p2

1 fT
7 euδjC0

In B physics the loop functions can be expanded

order by order as

B(p;m1,m2) = B(0) +
p2

m2
W

B(1) + · · ·

C(p1,p2;m1,m2,m2) = C(0) +
p2

1 +p2
2

m2
W

C1,(1)

+
2p1 ·p2

m2
W

C2,(1) + · · ·

with functions B(n), Cn,(1) being independent of mo-

menta. The definations and corresponding expansions

can be found in Ref. [6].

For a cross check, it is necessary to check our

result to see whether the Ward identity in on-shell

b → sγ is guaranteed. Firstly, we check the leading

term in effective terms, which are unsuppressed by a

factor p2/mW. In this case, p2
1 = p2

b = m2
b, p2

2 = p2
s = 0.

With the aid of the loop function expansions listed in

Ref. [6], it can be proven that

1

3
B(0)

1 +

[

2

3

(

−m2
j C

(0)
0 +

1

2
C(0)

24 −
1

2

)

−
1

2
ˆ

C(0)
24

]

= 0. (4)
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From Eq. (4) and Table 1, we have

Γ µ,Leading
b→sγ =

g2

2
e

i

16π2
γ

µPL

∑

j

VjbV
∗

js [f
S,(0)
1 +fT,(0)

1 ]

= 0, (5)

where the first term comes from a self-energy contri-

bution and the second term from a triangle contribu-

tion.

Secondly, we check the subleading terms:

Γ µ,Subleading
b→sγ =

g2

2

1

16π2

∑

j

VjbV
∗

js

×

{[

f (0)
2 +f (0)

3 +
1

2
f (0)
5

]

mb 6kγ
µPR

+

[

f (1)
1

m2
W

+
1

2
f (0)
5 +f (0)

7

]

m2
bγ

µPL

}

, (6)

where the coefficient f is a sum of fS and fT.

In obtaining the above equation, we have used the

motion equation for b → sγ and on-shell conditions,

and

s̄ 6p 1γ
µ 6p 1PLb = mbs̄ 6kγ

µPRb,

2mbs̄p
µ
1PRb = mbs̄ 6kγ

µPRb+m2
bs̄γ

µPLb

mb(γ
µ 6p 1+ 6p 2γ

µ) = m2
bs̄γ

µPLb. (7)

Note that the last term in Eq. (6) receives contribu-

tions from both the self-energy and triangle diagrams.

Since

f (1)
1

m2
W

+
1

2
f

(0)
5 +f

(0)
7 = 0, (8)

we can see that at order O(m2
b/m2

W), the on-shell ef-

fective vertex of b→ sγ only consists of a 6kγ
µ term,

which naturally satisfies the Ward identity and will

contribute to the operator O7.

We would like to point out here that it is still

necessary to check the coefficient of operator O7,

C7(mW). Again, using the loop function expansions

in Ref. [6], we obtain

C7(mW) =
1

2

[

f (0)
2 +f (0)

3 +
1

2
f (0)
5

]

=
1

2
{eu[−2C0−3(2+δj)C23 +(6−δj)C11]

+(−2+3δj)Ĉ11−3(2+δj)Ĉ23−δjĈ0

}

=
23

36
−

7δj−5δ2
j −8δ3

j

24(1−δj)3
−

3δ2
j (2−3δj)

4(1−δj)4
lnδj, (9)

which is the same as that in Refs. [7, 8]. Note here

that j is not yet summed and that the constant can

be omitted using the unitarity of the CKM matrix V .

3 A complete calculation for b→ sγγ

3.1 Effect due to off-shell quarks in vertex

b→ sγ on b→ sγγ

Now we focus attention on the effect of off-shell

quarks in vertex b → sγ on b → sγγ. As mentioned

in Section 1, one of the two quarks is off-shell, while

vertex b → sγ is used to describe b → sγγ, as shown

in Fig. 2.

Fig. 2. Self-energy Feynman diagrams for b→

sγγ. Diagrams with µ(k1) ↔ ν, p → p′ ex-

changes are omitted. The black circle stands

for self-energy correction.

Using the effective vertex of b → sγ in general

given in Eq. (2), with corresponding coefficients in

Table 1, we express the contribution as follows:

1) Contributions from self-energy diagrams

At the lowest order, the unsuppressed terms from

self-energy diagrams are independent of momentum,

and thus canceled out by corresponding terms from

the triangle diagrams, the same as those of on-shell

b → sγ; however, at a high order the situation

changes. By combining the six pieces we obtain

∆W S
µν = (−ed)

2 g2

2

e2

16π2

∑

j

VjbV
∗

jsPR

{

A(1)
1 [γν 6pγµ +γµ 6p

′
γν ]+2(A1−A(1)

2 )mbgµν

}

= e2
d

g2

2

e2

16π2

∑

j

VjbV
∗

jsPR

{

(A(1)
1 −2A(1)

2 )mbgµν +A(1)
1 [(pb +ps)µγν +(pb +ps)νγµ]−A(1)

1 εµναβγ
β

}

, (10)

where p = ps + k2, p′ = ps + k1 and Ai defined in

Eq. (1). The unsuppressed terms are not presented

in this equation. Note that the photons are assumed

to be on-shell, quarks are off-shell and relation

γµγνγα = gµνγα−gµαγν +gναγµ +iεµναλγ
λ
γ

5 (11)

has been used. From Eq. (10), it is clear that the

off-shell effect can be expanded with three bases.

2) Contributions from triangle diagrams

In the following, for simplification the globe coef-

ficient
g2

2

e2

16π2

∑

j
VjbV

∗

js in Eq. (10) will be dropped.
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After some straight calculation, we find that there is

an asymmetry with a µ↔ ν exchange in off-shell ef-

fect. In fact, the coefficient of term mbγνγµPR from

Fig. 3(a), 2fT
2 +fT

3 +fT
4 +

1

2
f 5 +fT

6 , seems to be dif-

ferent from that of term mbγµγνPR from Fig. 3(b),

fT,(1)
1

mW

+
1

2
f 5 +fT

6 . However, since relation

fT,(1)
1

mW

= 2fT,(0)
2 +fT,(0)

3 +fT,(0)
4 , (12)

the asymmetry does not indeed exist so we can re-

place them by the basis of mbgµνPR.

Fig. 3. Triangle Feynman diagrams for b →

sγγ. Diagrams with µ(k1) ↔ ν, p → p′ ex-

changes are omitted.

In summing up all of the triangle diagrams’ con-

tributions, we obtain:

∆WT
µν = −2edPR

{[

fT,(1)
1

mW

+fT
5 +2fT

6

]

mbgµν

+
fT,(1)
1

mW

[(pb +ps)µγν +(pb +ps)νγµ]

−
fT,(1)
1

mW

iεµναβγ
α(k2−k1)

β

}

. (13)

The total off-shell effect is then obtained by sum-

ming up the contributions from the self-energy and

triangle diagrams. Using Eq. (12) and

C0−2C11 = Ĉ0−2Ĉ11 =−B
(1)
0 ,

fT
5 +2fT

6 = 2δj[(C0−2C11)eu−(Ĉ0−2Ĉ11)]

= −2edA
(1)
2 , (14)

we can write the total off-shell contribution as

∆W off-shell
µν = ∆W S

µν +∆W T
µν =−e2

dPR

{

[A(1)
1

−2A(1)
2 ]mbgµν +A(1)

1 [(pb +ps)µγν

+(pb +ps)νγµ]+[A(1)
1 +6(fT

2

+fT
3 )]iεµναβγ

α(k2−k1)
β
}

. (15)

3.2 Contribution from diagrams without ver-

tex b→ sγ to b→ sγγ

Compared with the contributions from diagrams

with vertex b → sγ, those from the diagrams shown

in Fig. 4 to b → sγγ are not neglected, at least the

part from diagrams 4(a) is unsuppressed.

Fig. 4. Feynman diagrams without an effective

vertex of b → sγ contribute to b → sγγ.

Fig. (e) to (h), which are not shown here,

stand for the corresponding diagrams (a) to

(d) with W replaced by G, respectively. Dia-

grams with µ(k1)↔ ν(k2) are also omitted.

Before going into a detail calculation, it is ex-

pected that as with the calculations for the off-shell

effects, the effective vertex of b→ sγγ from diagrams

shown in Fig. 4 can be expanded using a set of bases

in Eq. (13):

Wµν = PR {a1mbgµν +a2[(pb +ps)µγν +(pb +ps)νγµ]

+a3iεµναβγ
α(k2−k1)

β
}

. (16)

We have extracted the coefficients for each diagram

and list them in Table 2 so that they may be checked

step by step. The total result is a sum of the contri-

butions.

Keeping the functions up to order O(m2
b/m2

W)

for consistency in our calculation, we use the loop

function D in the expression and denote D = D(mj,

mW, mW, mW), D̂ = D(mW, mj, mj, mj) and

D̃ = D(mj, mj, mW, mW). It is noticeable that the

contributions from Fig. 4(d) and the corresponding

one with W replaced by G, i.e., (h) seem to be asym-

metric for pb ↔ ps exchanges. Indeed, we find that

the coefficients of the term γ
µpν

b+γ
νpµ

b from Fig. 4(d)

and (h) are

−eu[16D̃311+24D̃312−3D̃27+4m2
j (D̃0 +D̃11−2D̃12)]

and

δjeu

[

−8D̃311−12D̃312 +
1

2
D̃27

−2m2
j (D̃0−D̃11−2D̃12)

]

,

respectively. We can prove that

8(D̃311 +D̃312) = D̃27, (17)

D̃11 +D̃12 = D̃0. (18)
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Table 2. Coefficients ai in the expression of an effective vertex b→γγ. The first four lines correspond to the

contributions from the diagrams displayed in Fig. 4, and the last four represent the contributions from the

diagrams with W replaced by G, respectively.

diagram a1 a2 a3

(a) −4C11 0 0

(b) 24D311 24D311 −2D27 −4D27

(c) −e2
u[−12D̂311 +D̂27−2m2

j (D̂0 +D̂11)] −e2
u[−12D̂311 +D̂27−2m2

j (D̂0−3D̂11)] e2
u[12D̂311−D̂27+2m2

j (D̂0−3D̂11)]

(d) 16euD̃312 eu[16D̃311 +8D̃312−D̃27−4m2
j D̃11] euD̃27

(e) 2δj[Ĉ0− Ĉ11] 0 0

(f) δj[12D311−2D27] δj[12D311 −D27] 0

(g) δje
2
u

[

6D̂311−
1

2
D̂27−m2

j (D̂0 +3Ĉ11)

]

δje
2
u

[

6D̂311 −
1

2
D̂27 +m2

j (D̂0−3D̂11)

]

−δje
2
u

[

6D̂311 −
1

2
D̂27−m2

j (D̂0 + Ĉ11)

]

(h) δjeu[8D̃312−2D̃27] δjeu

[

8D̃311 +4D̃312−
1

2
D̃27−2m2

j D̃11

]

δjeu

[

1

2
D̃27−4m2

j D̃0

]

This relation ensures that the bases introduced above

are enough for the result from diagrams with vertex

b→ sγ.

4 Discussions

We would like to make some remarks here regard-

ing our results:

1) The effects due to off-shell quarks in vertex

b→ sγ on b→ sγγ in Eq. (15) are large ;

2) From Eq. (16) it can clearly be seen that the

contributions from diagrams without an effective ver-

tex b → sγ to b → sγγ are not negligible compared

with others.

We now need to check the result to see whether the

Ward identity in b → sγ is guaranteed. This implies

that the coefficients of the first two bases should be

zero. If the coefficient of the last bases does not dis-

appear, to describe b→ sγγ the last operator should

be added to a set of bases for b→ sγ without violat-

ing the Ward identity. From Eqs. (15) and (16), one

can check that

a1−e2
d[A

(1)
1 −2A(1)

1 ] = 0, (19)

a2−e2
dA

(1)
1 = 0, (20)

a3−e2
d[A

(1)
1 +6(fT

2 +fT
3 )] = 0, (21)

where ai as a sum of the corresponding values in Ta-

ble 2 is understood. Therefore we can draw a conclu-

sion:

3) The off-shell effect and contribution from dia-

grams without vertex b → sγ cancel each other out

exactly, so the operators of b→ sγ can safely be used

to describe b→ sγγ.
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