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Transfer matrix for the open chain from giant gravitons *
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Abstract We construct the transfer matrix for the open chain with the centrally extended SU(2|2) symmetry

attached to the so called Z = 0 giant graviton brane. Using the reflection equations, unitarity property and

crossing property, we show that this model is integrable.
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1 Introduction

Exactly solvable models have been studied for a

long time leading to many important applications in

the fields of theoretical physics and condensed matter

physics. One of the most fascinating discoveries in re-

cent years was the unravelling of integrable structures

in planar N = 4 SYM theory [1, 2] and in AdS5×S5

super-string theory [3–5], which has lead to drastic

simplifications in determining some quantities. For

example, in planar N = 4 SYM, the planar anomalous

dimensions of local operators can be mapped to en-

ergies of quantum spin chain states, thus establishing

some relation to topics of condensed matter physics.

The Hamiltonian of this system is completely inte-

grable at the one loop level and apparently even at

higher loop levels. This remarkable feature shows

promise that the planar spectrum might be described

exactly by some sort of Bethe equations.

One way to obtain Bethe equations is to construct

transfer matrices with different boundaries in the

framework of the quantum inverse scattering method

(QISM) [6, 7]. Hofman and Maldacena (HM) [8]

recently considered open strings attached to maxi-

mal giant gravitons [9] in AdS5 × S5. They pro-

posed boundary S-matrices describing the reflection

of world-sheet excitations (giant magnons) for two

cases, namely, the Y = 0 and Z = 0 giant graviton

branes. For the Y = 0 case, Murgan and Nepomechie

constructed one transfer matrix [10]. Later the corre-

sponding Bethe equations were obtained by using the

algebraic [11] and the analytical ansatz method [12],

respectively. However, for the Z = 0 case, the trans-

fer matrix has not been clearly constructed and the

Bethe equations have not been achieved yet as far as

we know. So, in this paper, we construct the transfer

matrix for the open chain attached to Z = 0 giant

gravitons brane.

The outline of the paper is organized as follows.

In section 2 we will introduce the bulk S matrix and

boundary S matrix, including the right and left reflec-

tion equations. In section 3 we present the transfer

matrix for the Z = 0 giant gravition brane and show

the integrability for the spin chain model defined by

the transfer matrix. Some discussions are given in

section 4.

2 Bulk S-matrix and boundary S-

matrix

The bulk S-matrix based on SU(2|2) symmetry

can be found in Refs. [13, 14]. It satisfies the stan-

dard Yang-Baxter equation (YBE)

S12 (p1,p2)S13 (p1,p3)S23 (p2,p3) =

S23 (p2,p3)S13 (p1,p3)S12 (p1,p2) , (1)

where S12 = S⊗ I , S23 = I ⊗S and S13 = P12S23P12,

P12 is the permutation matrix, I is a 4× 4 identity
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matrix. The bulk S matrix has the unitarity property

S12(p1,p2)S21(p2,p1) = I, (2)

where S21 =P12S12P12, I = I⊗I , as well as the cross-

ing property [9, 15]

C2(p2)S12(p1, p̄2)C2(p2)
−1S12(p1,p2)

t2 = If(p1,p2),

(3)

C1(p̄1)S12(p̄1,p2)C1(p̄1)
−1S12(p1,p2)

t1 = If(p1,p2),

(4)

where C1(p) = C(p)⊗I, C2(p) = I⊗C(p), ti denotes the

transpose in the ith space, p̄ denotes the antiparticle

momentum with

x±(p̄) =
1

x±(p)
. (5)

f(p1,p2) is the scalar function

f(p1,p2) =

(

1

x+
1

−x−
2

)

(

x+
1 −x+

2

)

(

1

x−
1

−x−
2

)

(

x−
1 −x+

2

)

(6)

and satisfies the property

f(p1,p2) = f(−p2,−p1) = f(p̄1, p̄2). (7)

C(p) is the following matrix

C(p) =













0

−i sign(p)

0

0

i sign(p)

0

0

0

0

0

0

−1

0

0

1

0













. (8)

The x±(p) are defined by

x+(p)+
1

x+(p)
−x−(p)−

1

x−(p)
=

i

g
,

x+(p)

x−(p)
= eip (9)

with the property

x±(−p) =−x∓(p). (10)

Moreover, exchanging space 1 and space 2 in Eqs.

(3, 4) yields

C1(p1)S21(p2, p̄1)C1(p1)
−1S21(p2,p1)

t1 = If(p2,p1),

(11)

C2(p̄2)S21(p̄2,p1)C2(p̄2)
−1S21(p2,p1)

t2 = If(p2,p1).

(12)

The Z = 0 giant graviton brane has a boundary

degree of freedom and full SU(2|2) symmetry [8, 9].

We use a 16×16 matrix RR to denote the right bound-

ary S-matrix, which satisfies the right boundary re-

flecting equation (BYBE) [8, 9]

S12 (p1,p2)RR
13 (p1)S21 (p2,−p1)RR

23 (p2) =

RR
23 (p2)S12 (p1,−p2)RR

13 (p1)S21 (−p2,−p1) . (13)

Referring to the work of Nepomechie [10, 12], for the

Z = 0 case, we propose that the left BYBE has the

following form

S21(p2,p1)
t1t2RL

31(p1)
t1C1(−p1)×

S21(p2,−p1)
t2C1(−p1)

−1RL
32(p2)

t2 =

RL
32(p2)

t2C2(−p2)S12(p1,−p2)
t1 ×

C2(−p2)
−1RL

31(p1)
t1S12(−p1,−p2)

t1t2 , (14)

where the bulk S-matrix obeys the unitarity and

crossing property. Making a full transpose in space

1,2,3 on both sides of Eq. (14), we get

S12(p1,p2)M1R
L
31(−p1)

t3S21(p2,−p1)M2R
L
32(−p2)

t3 =

M2R
L
32(−p2)

t3S12(p1,−p2)M1R
L
31(−p1)

t3S21(−p2,−p1),

(15)

where

M = C(−p)C(p)−1 = diag(−1,−1,1,1) = M−1 (16)

and the crossing property Eqs. (4, 12), the identity

equation Eq. (7), and the following property

[S12(p1,p2),M ⊗M ] = 0 (17)

have been used. Comparing Eq. (15) with the right

BYBE Eq. (13), we get:

RL
21(p) = M1R

R
12(−p)t2 . (18)

3 The transfer matrix and its integra-

bility

Referring to the work of Refs. [10, 12], we pro-

pose that in the Z = 0 case, the transfer matrix is

constructed as

t(p;{qi}) = traR
L
0a(p)T R

a (p ;{qi}) =

traR
L
0a(p)Ta1···L(p ;{qi})R

R
aL+1(p)T̂a1···L(p;{qi}),

(19)

where

T R
a (p ;{qi}) = Ta1···L(p ;{qi})R

R
aL+1(p)T̂a1···L(p ;{qi})

(20)

satisfying

Sab(pa,pb)T
R

a (pa ;{qi})Sba(pb,−pa)T
R

b (pb ;{qi}) =

T R
b (pb ;{qi})Sab(pa,−pb)T

R
a (pa ;{qi})Sba(−pb,−pa),

(21)

and

Ta1···L(p ;{qi}) = SaL(p,qL) · · ·Sa1(p,q1), (22)

T̂a1···L(p ;{qi}) = S1a(q1,−p) · · ·SLa(qL,−p), (23)
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which obey the following relations

Sab(pa,pb) Ta1···L(pa;{ qi} )Tb1···L(pb;{ qi} ) =

Tb1···L(pb;{ qi} ) Ta1···L(pa;{ qi} )Sab(pa,pb), (24)

Sba(−pb,−pa) T̂a1···L(pa;{ qi} )T̂b1···L(pb;{ qi} ) =

T̂b1···L(pb;{ qi} ) T̂a1···L(pa;{ qi} )Sba(−pb, −pa),

(25)

T̂a1···L(pa;{ qi} )Sba(pb, −pa)Tb1···L(pb;{ qi} ) =

Tb1···L(pb;{ qi} ) Sba(pb, −pa)T̂a1···L(pa;{ qi} ).

(26)

In the following we will show the integrability for

the spin chain model defined by the transfer matrix

Eq. (19). During the calculation the scalar functions

f(pb,−pa), f(pa,−pb) are omitted. At first, we write

t(pa;{qi})t(pb;{qi}) as

t(pa;{qi})t(pb;{qi}) =

traR
L
0a (pa)T

R
a (pa;{qi})trbR

L
0b (pb)T

R
b (pb;{qi}) =

traR
Lta
0a (pa)T

Rta
a (pa;{qi})trbR

L
0b (pb)T

R
b (pb;{qi}) =

trabR
Lta
0a (pa)R

L
0b (pb)T

Rta
a (pa;{qi})T

R
b (pb;{qi}).

Inserting the crossing property Eq. (11) into the

above equation, we have

· · · = trabR
Lta
0a (pa)RL

0b (pb)Ca(−pa)Sba(pb,−pa)Ca(−pa)
−1Sba(pb,−pa)

taT Rta
a (pa;{qi})T

R
b (pb;{qi}) =

trab
(

RLta
0a (pa)Ca(−pa)S

tb
ba(pb,−pa)Ca(−pa)

−1R
Ltb
0b (pb)

)tb
(

T R
a (pa;{qi})Sba(pb,−pa)T

R
b (pb;{qi})

)ta
=

trab
(

RLta
0a (pa)Ca(−pa)S

tb
ba(pb,−pa)Ca(−pa)

−1R
Ltb
0b (pb)

)tatb
(

T R
a (pa;{qi})Sba(pb,−pa)T

R
b (pb;{qi})

)

,

where · · · denotes t(pa;{qi})t(pb;{qi}) for the sake of simplicity. Inserting the unitarity property Eq. (2) to the

above result, we get

· · · = trab

(

RLta
0a (pa)Ca(−pa)S

tb
ba(pb,−pa)Ca(−pa)

−1
R

Ltb
0b (pb)

)tatb
Sba (pb,pa)Sab (pa,pb)×

(

T R
a (pa;{qi})Sba(pb,−pa)T

R
b (pb;{qi})

)

=

trab

(

S
tatb
ba (pb,pa)RLta

0a (pa)Ca(−pa)S
tb
ba(pb,−pa)Ca(−pa)

−1
R

Ltb
0b (pb)

)tatb
×

(

Sab (pa,pb)T
R

a (pa;{qi})Sba(pb,−pa)T
R

b (pb;{qi})
)

.

Now using the left and right reflection equations Eqs. (14, 21), we obtain

· · · = trab

(

R
Ltb
0b (pb)Cb(−pb)S

ta
ab (pa,−pb)Cb(−pb)

−1
RLta

0a (pa)S
tatb
ab (−pa,−pb)

)tatb
×

(

T R
b (pb;{qi})Sab (pa,−pb)T

R
a (pa;{qi})Sba(−pb,−pa)

)

=

trabSab(−pa,−pb)
(

R
Ltb
0b (pb)Cb(−pb)S

ta
ab (pa,−pb)Cb(−pb)

−1
RLta

0a (pa)
)tatb

×
(

T R
b (pb;{qi})Sab (pa,−pb)T

R
a (pa;{qi})Sba(−pb,−pa)

)

=

trab

(

R
Ltb
0b (pb)Cb(−pb)S

ta
ab (pa,−pb)Cb(−pb)

−1
RLta

0a (pa)
)tatb

T R
b (pb;{qi})×

Sab (pa,−pb)T
R

a (p1;{qi})(Sba(−pb,−pa)Sab(−pa,−pb)) .

Using the unitarity property (2) again, we achieve

· · · = trab

(

R
Ltb
0b (pb)Cb(−pb)S

ta
ab (pa,−pb)Cb(−pb)

−1
RLta

0a (pa)
)tatbT R

b (pb;{qi})Sab (pa,−pb)T
R

a (pa;{qi}) =

trab

(

R
Ltb
0b (pb)Cb(−pb)S

ta
ab (pa,−pb)Cb(−pb)

−1
RLta

0a (pa)
)tb

(

T R
b (pb;{qi})Sab (pa,−pb)T

R
a (pa;{qi})

)ta
=

trCtb
b (−pb)

−1S
tatb
ab (pa,−pb)C

tb
b (−pb)R

L
0b (pb)RLta

0a (pa)T
R

b (pb;{qi})T
Rta

a (pa;{qi})S
ta
ab (pa,−pb) =

trSta
ab (pa,−pb)C

tb
b (−pb)

−1S
tatb
ab (pa,−pb)C

tb
b (−pb)R

L
0b (pb)RLta

0a (pa)T
R

b (pb;{qi})T
Rta

a (pa;{qi}) =

tr
(

Cb(−pb)Sab (pa,−pb)Cb(−pb)
−1

S
tb
ab (pa,−pb)

)tatb
RL

0b (pb)RLta
0a (pa)T

R
b (pb;{qi})T

Rta
a (pa;{qi}).

At last, using the crossing property (3) again, we arrive at

· · · = trRL
0b (pb)RLta

0a (pa)T
R

b (pb;{qi})T
Rta

a (pa;{qi}) = trRL
0b (pb)T

R
b (pb;{qi})R

Lta
0a (pa)T

Rta
a (pa;{qi}) =

trbR
L
0b (pb)T

R
b (pb;{qi})traR

Lta
0a (pa)T

Rta
a (pa;{qi}) = trbR

L
0b (pb)T

R
b (pb;{qi})traR

L
0a (pa)T

R
a (pa;{qi}) =

t(pb;{qi})t(pa;{qi}).
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This means

[t(pa;{qi}), t(pb;{qi})] = 0. (27)

So the spin chain model is integrable.

4 Discussion

We constructed the transfer matrix for the open

chain attached to the so called Z = 0 giant gravition

brane, and showed the integrability for the model

defined by the transfer matrix. There are at least

two things that we need to explore further. One

is how to derive the Hamiltonian corresponding to

the transfer matrix. The other is the exact solutions

for the transfer matrix. For the Y = 0 case, the

Bethe equations for the transfer matrix have been

obtained by Galleas [11] using the algebraic Bethe

ansatz method [16, 17] and by Nepomechie [12] using

the analytical Bethe ansatz method [18]. However,

for the Z = 0 case, the work will become more tough.
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