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Microscopic calculation of the magnetic

field of neutron stars *
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Abstract Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric

magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron

star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen

orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly

degenerate orbitals with the quantum numbers pz = 0, n = 0, and m > 0. At the ground state, the electrons

fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius

λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section

and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the

number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of

the neutron star can be calculated. The results are compared with the observational data and the agreement

is reasonable.
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1 Introduction

Large magnetic fields have been observed on neu-

tron stars. The neutron star’s surface magnetic

field is very difficult to observe directly, however,

it can be calculated by measuring some other sig-

nificant quantities[1]. For example, the magnetic

field from the pulse cycles of neutron stars is about

3×107—3×109 T[2]. We can also calculate the mag-

netic field by virtue of the age of the pulsar and its

radiation frequency. In addition, the magnetic field

of neutron stars from the observation of X-ray as-

tronomy is about 108—2×109 T[3], and a direct mea-

surement of an isolated neutron star’s magnetic field

is about 8× 106 T[4]. At present, people generally

think that the neutron star’s surface magnetic field

is about 108—1010 T[5]. In recent years, a class of

super-high energy pulsars called magnetic stars have

been found. The magnetic stars are also neutron

stars, born in the center of the massive stars or super-

novas. But we don’t know exactly what mechanism

makes every magnetic star have a powerful magnetic

field 109—1014 T[6—8]. The strong magnetic field of

neutron stars is sure to impact the state of neutron

stars[5, 9]. For instance, research shows that in the

mean-field approximation, the equation of state be-

comes stiffer in some degree[3].

Theoretical studies of the large magnetic fields on

the surfaces of neutron stars are relevant to the fer-

romagnetic model, which gives the extreme magnetic

field of neutron stars of about 108 T[10, 11], but it is

about 2—3 orders of magnitude smaller than the ob-

servations of the magnetic stars.

In this letter, we shall conduct a novel micro-

scopic calculation of the magnetic field of neutron

stars. Based on the Dirac equation describing an

electron moving in a uniform and cylindrically sym-

metric magnetic field which may be the result of the

self-consistent mean field of electrons themselves in a

neutron star, we have obtained the eigen solutions
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and the orbital magnetic moments of electrons in

which each eigen orbital can be calculated. From

the eigen energy spectrum we find that the lowest

energy level corresponds to the highly degenerate or-

bitals with the quantum numbers pz = 0, n = 0, and

m > 0. At the ground state, the electrons fill the

lowest eigen states to form many Landau magnetic

cells and each cell is a circular disk with the radius

λfree and the thickness λe, where λfree is the electron

mean free path determined by Coulomb cross section

and electron density and λe is the electron Compton

wavelength. The magnetic moment of each cell and

the number of cells in the neutron star are calculated,

from which the total magnetic moment and magnetic

field of the neutron star can be calculated.

In the outer crust of neutron stars the electrons

form electron gas. In the gas and within the circle

with the radius of the mean free path λfree, the elec-

trons fill the lowest Landau levels and form magnetic

cells; the sum of all the orbital magnetic moments of

the electrons in the cell constitutes the magnetic mo-

ment of the cell, and the sum of all the cell’s magnetic

moments gives the total magnetic moment of the neu-

tron star. According to this microscopic model, the

calculated magnetic field of neutron stars is about

105—1011 T for a range of electron densities, which is

in between the magnetic field values of magnetic stars

and neutron stars. The results are compared with the

observational data and the agreement is reasonable.

2 Dirac equation and orbital magnetic

moment of electrons in a uniform

magnetic field

The mean field in a neutron star is usually as-

sumed to be uniform. To describe the motion of an

electron in a neutron star, we consider the Dirac equa-

tion for an electron moving in a uniform magnetic

field B = (0,0,B)

HΨτ,pz,ρ,n,m = τEpz,n,mΨτ,pz,ρ,n,m , (1)

the Hamiltonian is

H = α •(P −qA)+βµ , (2)

which has cylindrical symmetry and conserves the z-

component of momentum, thus Pz can be replaced

by its eigen value pz. Based on the observation that

the γ-matrices have structure and are decomposable,

we decompose the γ-matrices into the direct product

of the operators in the spin space and the particle-

antiparticle space. The α-matrices and β-matrices

read[12, 13]

α =

(

σ 0

0 −σ

)

, (3)

β =

(

0 −I

−I 0

)

, (4)

thus

H = τ3⊗σ •(P −qA)−τ1⊗Iµ , (5)

where

A =

(

−1

2
By,

1

2
Bx,0

)

=

(

−1

2
Br sinφ,

1

2
Br cosφ,0

)

.

In cylindrical coordinates, the Hamiltonian can be

rewritten as,

H =

















pz η+ −µ 0

η− −pz 0 −µ

−µ 0 −pz −η+

0 −µ −η− pz

















, (6)

the operators are defined as follows

η+ =−ieiφ

(

∂
∂r

− i
1

r

∂
∂φ

− 1

2
qBr

)

, (7)

η− =−ie−iφ

(

∂
∂r

+i
1

r

∂
∂φ

+
1

2
qBr

)

. (8)

In the spin-coordinate space, the not-normalized local

helicity operator can be defined as

Σ′ =

(

pz η+

η− −pz

)

. (9)

Since [Σ′,H ] = 0, Σ′ is a conserved quantity in spin

and coordinate space and has common eigen solutions

with H . The eigen equation of Σ ′ is

Σ′χρ,n,m(r,φ) = ρZpz,n,mχρ,n,m(r,φ) . (10)

The normalized local helicity operator is Σ =
1

Zpz,n,m

Σ′, so

Σχρ,n,m(r,φ) = ρχρ,n,m(r,φ) . (11)

In the cylindrical-coordinates, we choose the

following basis to solve the Dirac equa-

tion in spin-coordinate space, un,m(r,φ) =

Nn,meimφ(αr)|m|e−α2r2/2 F (−n, |m| + 1,α2r2), with

α =
√

qB/2, n > 0 and m are integers, F (−n, |m|+
1,α2r2) is the confluent hyper geometric function.
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The normalized constant is

Nn,m =
1

√

π

1

α

n
∑

k=0

(

(−n)k

k!(|m|+1)k

)2

Γ

(

2k+ |m|+ 1

2

)

,

the complete eigen solutions of (11) are:

(1) Right handed (R) solution, ρ = 1:

χ+,n,m(r,φ) =









un,m(r,φ)

1

pz +Zpz,n,m

η−un,m(r,φ)









. (12)

(2) Left handed (L) solution, ρ =−1:

χ−,n,m(r,φ) =









un,m(r,φ)

1

pz −Zpz,n,m

η−un,m(r,φ)









, (13)

where Zpz,n,m =
√

(2n+ |m|−m)qB+p2
z.

In the above situation, the eigen wave functions

in spin-coordinate space have been obtained analyt-

ically. In the following, we should solve the eigen

wave functions in particle-anti-particle space. The

Hamiltonian in the particle-antiparticle space can be

written as

Hτ = ρZpz,n,mτ3−µτ1 . (14)

The eigen equation in particle-antiparticle space is

Hτυτ = τEpz,n,mυτ , (15)

where Epz,n,m =
√

(2n+ |m|−m)qB+p2
z +µ2 is the

famous Landau levels in relativistic case.

For particle, τ = +1

υ+ =

√

Epz ,n,m +ρZpz,n,m

2Epz,n,m









1

− 1

Epz,n,m +Zpz,n,m









(16)

and for anti-particle, τ =−1

υ− =

√

Epz ,n,m +ρZpz,n,m

2Epz,n,m







1

Epz,n,m +Zpz,n,m

1






.

(17)

The total wave function can be factorized into

three types of wave functions in coordinate z-space,

spin-coordinate (r,φ) space, and particle-anti-particle

space, it contains five quantum numbers: Ψτ,pz,ρ,n,m ∼
eipzz/~χ,n,m(r,φ)⊗ υτ . specifically, for particle solu-

tions, τ = +1, E ′ = τEpz ,n,m = +Epz,n,m, one has:

R-particle solution ρ = +1,

Ψ1 =

D



























un,m

1

pz +Zpz,n,m

η−un,m

− µ

Epz,n,m +Zpz,n,m

un,m

− µ

Epz,n,m +Zpz,n,m

1

pz +Zpz,n,m

η−un,m



























e
ipzz

~ .

(18)

And L-particle solution ρ =−1,

Ψ2 =

D



























un,m

1

pz −Zpz,n,m

η−un,m

− µ

Epz,n,m +Zpz,n,m

un,m

− µ

Epz,n,m +Zpz,n,m

1

pz −Zpz,n,m

η−un,m



























e
ipzz

~ .

(19)

For the anti-particle solution, τ = −1, E ′ =

τEpz ,n,m =−Epz,n,m, one has R-anti-particle solution

ρ = +1

Ψ3 = D



























µ

Epz,n,m +Zpz,n,m

un,m

µ

Epz,n,m +Zpz,n,m

1

pz +Zpz,n,m

η−un,m

un,m

1

pz +Zpz,n,m

η−un,m



























e
ipzz

~ .

(20)

And L-anti-particle solution,ρ =−1,

Ψ4 = D



























µ

Epz,n,m +Zpz,n,m

un,m

µ

Epz,n,m +Zpz,n,m

1

pz −Zpz,n,m

η−un,m

un,m

1

pz −Zpz,n,m

η−un,m



























e
ipzz

~ ,

(21)

where

D =
1√
2

√

Epz ,n,m +ρZpz,n,m

Epz ,n,m

.

For the ground state of electrons, τ = +1, ρ =±1,

pz = 0, n = 0, m > 0, Z0,0,m = 0, E0,0,m = µ,
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Ψ+,pz,ρ,n,m = Ψ+,0,ρ,0,m.

The electron (particle) solution,

Ψ+,0,ρ,0,m =
1√
2













u0,m

0

−u0,m

0













≡Ψ0 . (22)

The magnetic moment of the particles in the lowest

levels is

µ= 〈Ψ0|µlĴz +(µs−µl)Sz|Ψ0〉. (23)

The total angular momentum Ĵz

Ĵz =











−i
∂

∂φ
+

1

2
0

0 − i
∂

∂φ
− 1

2











⊗I , (24)

Ĵz|Ψ0〉=

(

m+
1

2

)

|Ψ0〉. (25)

Therefore, Ψ0 is the normalized eigenstate of Ĵz,

〈Ψ0|Ψ0〉= 1. So

〈Ψ0|Ĵz|Ψ0〉=

(

m+
1

2

)

µp(e) . (26)

Consider the expectation value of the intrinsic spin

Sz =









1

2
0

0 − 1

2









⊗I , (27)

〈Ψ0|Sz|Ψ0〉=
1

2
µp(e) , (28)

so

µm = 2(m+1)µp(e) . (29)

The electron magnetic moment µe = 9.274 ×
10−24 J •T−1 and the proton magnetic moment µp =

5.059×10−27 J •T−1, from which one can see µe �µp,

so we can neglect the contribution of protons.

3 Magnetic field of neutron stars from

electrons in the outer crust

The outer crust of neutron stars is mainly com-

posed of electrons and protons, its mass density is

about 104—106 g/cm3, and so the electron and proton

number density is 1028—1030/cm3. The thickness of

the outer crust is about 1 km. In the outer crust and

at the ground state, the electrons fill the lowest lev-

els and form the Landau magnetic cells. The Landau

magnetic cell is a circular disk with the radius λfree

and the thickness λe. The sum of the orbital magnetic

moments of the electrons in the cell constitutes the

magnetic moment of the Landau cell. The key point

is to calculate the number of the magnetic cells in the

outer crust and the magnetic moment of each Landau

magnetic cell. In doing so, we can obtain the total

magnetic moment and magnetic field of the neutron

star. The thickness of the magnetic cell is the elec-

tron Compton wavelength λe =
~

µc
= 3.86×10−11 cm,

and the radius of the magnetic cell is the mean free

path of the electron

λfree =
1

ρeσ
, (30)

here, ρe is the number density of the electron, σ is

the e-e and e-neuclus Coulomb cross section. In the

e-e and e-neuclus collision, the Rutherford scattering

differential cross section is

dσ

dΩ
= σc =

(

1

4πε0

Z1Z2e
2

4E

)2
1

sin4 θ

2

, (31)

here Z1 and Z2 are the charge numbers of the incident

and the target particles, E is the energy of the elec-

tron, and θ is the scattering angle. To obtain a finite

total cross section, one should consider the screening

effect of the mean field of the crust or electron finite

size effect, and the total cross section in the mean

field is

σ =

∫
σcdΩ =

∫
π

0

(

1

4πε0

Z1Z2e
2

4E

)2
sinθdθ

sin4 θ

2
+α2

=

(

1

4πε0

Z1Z2e
2

4E

)2

4π

1

α
arctan

1

α
, (32)

where α represents the Coulumb screening factor of

the electron in the mean field of the crust of the neu-

tron star or the electron finite size effect. Due to the

lack of information about the screening effect of the

mean field, we take the information from the electron

itself and assume α =
re

λe

representing both the finite

size effect and the Compton wavelength effect of an

electron. Here re is the classic radius of the electron,

and λe is the Compton wavelength of the electron. At

zero temperature approximation, the average energy

of the electron can be assumed to be the Fermi energy

E =
~

2

2me

(3π
2ρe)

2/3 . (33)

The number density of electrons in the outer crust is

ρe = 1028—1030 cm−3 and the corresponding energy is

E=0.078—0.36 MeV. So the electron total Coulomb

crossing section is σ = 1.2×10−20−2.6×10−23 cm2,
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and the mean free path of the electron with respect

to Coulomb collisions is λfree =
1

ρeσ
= 8.3× 10−9—

3.8×10−8 cm, which is the radius of the Landau mag-

netic cell since beyond the mean free path, the Lan-

dau quantum orbitals of electrons will be destroyed

by Coulomb collisions. Within the magnetic cell, the

electrons fill the lowest Landau levels up to the maxi-

mum magnetic quantum number mf (the angular mo-

mentum on the Fermi surface) determined by the rela-

tionship between the electron surface number density

σe and the maximum magnetic quantum number mf

σe =
N

πR2
0

= 2

mf
∑

m=0

1

πR2
0

=
2(mf +1)

πR2
0

, (34)

here the radius R0 of the magnetic cell is assumed to

be R0 = λfree as mentioned above, and the electron

surface number density σe can be obtained from the

number density ρe times the Compton wavelength λe

describing the position quantum uncertainty of elec-

tron in z-direction (the cylindrical symmetric axis

along which pz is conserved, while the plane of mag-

netic cells is perpendicular to it),

σe = ρeλe =
ρe~

µc
, (35)

in this way, the maximum magnetic quantum number

is obtained as

mf =
ρe~

2µc
×πλ2

free−1 , (36)

the total magnetic moment of the magnetic cells is

the sum of all the orbitals of the cell,

M0 =

mf
∑

m=0

2(m+1)µe = 1.9×103−7.6×109µe . (37)

The volume of the magnetic cell is equal to the area

of the circular disk times its thickness v0 = πR2
0×λe =

8.5×10−27—1.7×10−25 cm3. The radius of the neu-

tron star is R = 106 cm, and the thickness of the

outer crust is ∆R = 1 km = 105 cm. So, the volume

of the outer crust is V = ∆R×4πR2 = 1.3×1018 cm3.

And the number of the Landau magnetic cells in the

outer crust of the neutron star is Ncell = V/v0 =

1.5×1044−7.2×1042, so the total magnetic moment

of a neutron star is

M = NcellM0 ≈ 2.9×1047−5.5×1052µe . (38)

So, the magnetic field of a neutron star near the sur-

face can be derived from its magnetic moment and

reads

B =
µ0M

2πR3
≈ 5.4×105−1.0×1011 T , (39)

the magnetic constant µ0 = 4π×10−7N • A−2, N= new-

ton, A=Amper. The calculated magnetic field of the

neutron star is about 105—1011 T which is reasonable

in comparison with the observational data.

4 Conclusions and discussions

Based on the Dirac equation of electrons moving

in a uniform and cylindrically symmetric magnetic

field in a neutron star, we have obtained the eigen so-

lutions and calculated the orbital magnetic moments

of electrons in each lowest eigen orbital. From the

eigen energy spectrum we find that the lowest energy

level is the highly degenerate orbitals. At the ground

state, the electrons fill the lowest eigen states to form

many Landau magnetic cells and each cell is a cir-

cular disk with the radius λfree of the electron mean

free path and the thickness λe of the electron Comp-

ton wavelength. The magnetic moment of each cell

and the number of cells in the neutron star are cal-

culated, from which the total magnetic moment and

magnetic field of the neutron star are calculated. The

calculated magnetic field of the neutron star is about

105—1011 T which is reasonable in comparison with

the observational data.

It should be noted that the responses of an elec-

tron to an external magnetic field in the relativistic-

quantum case are different from those in the non-

relativistic-classical case where the spin magnetic mo-

ment and the orbital magnetic moment are treated

separately, and the responses of an electron to an

external magnetic field are para-magnetically for its

spin magnetic moment and anti-magnetically for its

orbital magnetic moment. However in our case, the

spin magnetic moment and the orbital magnetic mo-

ment cannot be treated separately and classically.

The eigen energies of an electron (Eq. (15) and be-

low), according to the Dirac equation with a cylindri-

cally symmetric magnetic field, are functions of the

orbital magnetic quantum number m. The lowest en-

ergy levels of the electron are the eigen energy states

with the quantum numbers n = 0, pz = 0, and m > 0.

The ground state of the electron system is thus the

state with all its electrons occupying the highly de-

generate lowest eigen energy levels, which results in

a constructive enhancement of the total orbital mag-

netic quantum number and the corresponding mag-

netic moment of the system.

In this letter, the model is tentative and the cal-

culation is primarily due to the uncertainty of the

observational data. In the calculation, only the or-

bital magnetic moments of the electrons in the outer
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crust of neutron stars are considered. The con-

tributions from protons and neutrons are neglected

because their orbital magnetic moments are much

smaller compare with those of electrons. Besides, the

system is assumed to be in ground state and the finite

temperature effect is not included. In the next study,

the model should be improved, the finite tempera-

ture effect on the magnetic field should be considered

and yet the contributions from protons and neutrons

should be estimated.
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