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Abstract Based on the assumption of a two-quark structure of the scalar meson f5(980), we calculate the

branching ratios and CP-violating asymmetries for the four B — f,(980) and B — f,(980)n"") decays by

employing the perturbative QCD (pQCD) factorization approach. The leading order pQCD predictions for
branching ratios are, Br(B~ — fo(980)717) ~2.5x107%, Br(B° — f5(980)7°) ~ 2.6 x 10~7, Br(B° — f5(980)1) ~
2.5x107" and Br(B® — f5(980)n) ~ 6.7x107", which are consistent with both the QCD factorization predictions

and the experimental upper limits.
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1 Introduction

Very recently, some B — SP decays have been
studied, for example, by employing the QCD factor-
ization (QCDF) approach or the perturbative QCD
(pQCD) approach!™ ®. In the B factory, the first
scalar meson f,(980) was observed in the decay mode
B — £,(980)K by Belle!”, and later confirmed by
BaBar!”, then many B — SP channels have been
measured® 7.

In this paper, we will calculate the branching ra-
tios and CP asymmetries of B~ — £,(980)7~, B —
£,(980)7® and B® — £,(980)n" decays in the pQCD
approach at the leading order. This paper is orga-
nized as follows: In Sec. 2, we give a brief discus-
sion about the physical properties of £,(980), and will
calculate the decay amplitudes for the considered de-
cays. Sec. 3 contains the numerical results and dis-
cussions.

2 Decay amplitudes of B — £,(980)
(7t,n) decays

At present we still do not have a clear understand-
ing about the inner structure of the scalar mesons.
There are many interpretations for the scalar mesons,
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such as the qqqq four-quark state!® or the qg state!”,

the possibilities of the KK molecular state!’”, and
even an admixture with glueball states.

In the four-quark model, the flavor wave func-
tion of £,(980) is symbolically given by!™ f, =ss(ui+
dd)/ V2, which is supported by a lattice calculation.
This scenario can explain some experiment phenom-
ena, such as the mass degeneracy of f,(980) and
a0(980), the large coupling of f,(980) and a,(980) to
KK. But we may wonder if the energetic f,(980) pro-
duced in B decays is dominated by the four-quark
configuration as it needs to pick up two energetic
quark-anti quark pairs to form a fast-moving light
four-quark scalar meson!""l.

In the naive 2-quark model, f,(980) is purely an ss
state and this is supported by the data of D} — fymr*
and ¢ — fyy. However, there also exists some experi-

1
ment evidence, such as I'(J /1 — fyw) ~ §F(J/ll) —

fod), £,(980) — 77t is not OZI suppressed relative to
a0(980) — 7, indicating that f,(980) is not purely an
s§ state, but a mixture of s§ and ni = (uii+dd)/v/2:

|£5(980)) = |s8) cos @+ |nn) sind, (1)

where 6 is the mixing angle. According to Ref. [12],
0 lies in the ranges of 25° < 6 < 40° or 140° < 0 <
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165°. Because of our poor knowledge about the non-
perturbative dynamics of QCD, we still can not dis-
tinguish between the four-quark and two-quark model
assignment at present. Some authors, on the other
hand, have shown that the scalar mesons with masses
above 1 GeV can be identified as conventional qq
states with a high probability!"® . This conclusion
was obtained by calculating the masses and the decay
constants of these scalar mesons composed of quark-
antiquark pairs based on the QCD sum rule. We here
work in the two-quark model and identify f,(980) as
the mixture of ss and nn, in order to give quantitative
predictions.

In the two-quark model, the decay constants for
scalar meson f,(980) are defined by:

(fo)@.@:10) =0, (fo(p)|Z2q:|0) =msfs, (2)

and

(F31310) = (F3 o) = —mi i (F5810) =,
(3)
where f5' and f§ represent the quark flavor states of
£,(980). Using the QCD sum rules method, one can
find that the scale-dependent scalar decay constants
Ji and f¢ are very close!™ ' So one usually assumes
fi, = fi, and denotes them as f, in the following.
The twist-2 and twist-3 light-cone distribution
amplitudes (LCDAs) for different components of
scalar meson f,(980) are defined by:

(Fo()]a(2)ig(0);]0) = ﬁ J dze™ x

{¢¢f0 (‘T) + mfod)?o (1’) +mfo (%+¢* - 1)¢2; (‘T) }jl .
(4)
Here we assume that f'(p) and f5(p) have the same
form and are denoted as f,(p), and ny =(1,0,07) and
n_=(0,1,0r) are the light-like vectors.

The twist-2 LCDA &¢(x,u) can be expanded as
the Gegenbauer polynomials:

Pilap) = V;Tmm(l—x)x
S B.(W)CEr-1),  (5)

where the values for Gegenbauer moments are taken
at scale p =1 GeV: B; = —-0.78£0.08, B, =0 and
B3=0.02+0.07.

As for the twist-3 distribution amplitudes @ and
&F, we adopt the asymptotic form:

S _ 1 r T 1 r _
gzsf_2\/2—]\]cff7 d)f _2\/2—]\7Cff(1 21‘) (6)

The B meson is treated as a heavy-light system.

We here use the same B meson wave function as in
Refs. [15, 16]. For the n-n’ system, we use the quark-
flavor basis with n, = (u+dd)/v2 and n, = s,
employ the same wave function, the identical distri-
bution amplitudes ¢;-7", and use the same values
for other relevant input parameters, such as f, =
(1.07£0.02) fr, fo =(1.34£0.06) fr, » =39.3°+1.0°,
etc., as given in Ref. [17]. From these currently known

15,16, 18] we believe that there is not much

studies!
room left for the contribution due to the gluonic com-
ponent of ), and therefore neglect the possible glu-
onic component in both the n and n’ mesons.

The pQCD factorization approach has been used
to study the B — £,(980)K decays'® *. Following the
same procedure of Ref. [3], we here would like to study
B — £,(980)7 and £,(980)n" decays by employing the
pQCD approach at the leading order.

Since the b quark is rather heavy we consider the
B meson at rest for simplicity. By using the light-
cone coordinates the B meson and the two final state
meson’s momenta can be written as

MB MB
Py = —2(1,1,01), Py==—2(1,0,07),
B \/5( T) 2 \/5( T)
M,
Py = —2(0,1,07), (7)

V2
where the meson masses have been neglected.

Putting the anti-quark momenta in B, P and S
mesons as k;, ko, and ks, respectively, we can choose

ky = (z1P,0,kir),
kQ = (w2P2+707k2T)7 (8)
kg = (07(1}’3P37,k3'1").

In the pQCD approach, the decay amplitude
A(B — Pfy) can be written conceptually as

A(B _>Pf0) ~ Jd4k1d4k2d4k3 ’I‘I‘[C(t)@]g(kl)ép (kg) X
Qfo (k3)H(k17k27k37t)]aN
deldxzdxgbldblbzdbgbgdb:; X

Tr[C(t)Pp(21,01)Pp(xo,bs) X
D¢ (25,b3) H (;,b;,1) S, (z;) e 5B, (9)

where the term “Tr” denotes the trace over Dirac
and color indices. C(t) is the Wilson coefficient. The
function H (z;,b;,t) is the hard part and can be calcu-
lated perturbatively, while b; is the conjugate space
coordinate of k;r, and t is the largest energy scale in
the hard function. The function @y is the wave func-
tion which describes hadronization of the quark and
anti-quark to the meson M. The threshold function
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Si(x;) smears the end-point singularities on z;. The where the Fermi constant G =1.16639x107° GeV 2,
last term, e~ is the Sudakov form factor which Vi is the Cabbibo-Kobayashi-Maskawa (CKM) ma-

suppresses the soft dynamics effectively. trix elements, C;(u) are Wilson coefficients at the
For our considered decays, the relevant weak ef- renormalization scale u and O; are the four-fermion
fective Hamiltonian H.g can be written as operators for the case of b — d transition.

In the pQCD approach, the typical Feynman di-
Gr agrams contributing to the B® — £,(980)n°, B~ —
Heg = NG Z quVq*d{[Cl ()01 (1) + Ca ()O3 ()] + f5(980)7t~ and B — £,(980)n") decays at the leading

q=u,c

order are illustrated in Fig. 1. By analytical calcula-

1200_( )Os( )} (10) tions of the relevant Feynman diagrams, one can find
— il | the total decay amplitudes for the considered decays:
M(fyn®) = 5—“[(—M + Mor+ Mg+ M) Oy + (F, JrFerFf)aﬂFl(e)Jri Fr? aﬁ—lag +
\/5 eTt aTt € a arT € al \/5 eTt 2

1 1 1 1
M., (O3+2O4— 5Cg+ 5010> +MF? <2CG+ 508> +(MEY 4+ MEP + ME + MEY) <05 - 5&) +
3 P2 P2 P2 3
(Maﬂ+Mcf+Maf) C(3_50‘10 _(Man +Mcf +Maf )508—
3 3 1 P2 P2 P2 1
(Fan+Fef+Faf) —a4—§a7+5a9+§a10 +(Fam +Fef +Faf) 0/6—5@8 F1(9)+
1 - 1
M 04—5010 +M._; 06_508 F5(0) ¢, (11)
1
M(fO 7-[7) = gu [Menc2+(Man+Mef+Maf)Cl +(Fan+Fef+Faf)a/1}Fl(9) _gt{ |:FCF7)-[2 (aﬁ_ §a8) +
1 1 P1 1 P1 P1 P1
M O3+2C4—§Cg+5010 +M_: 05—507 + (M + M+ M) (Cs+Cyr)—
1
(Mor+ Mt + M) (Cs + Co) + (Fan + Fog + Fag) (as +aro) + (FE2+ FR2 + FE?) (a6 — 5(18) } F(0)+
1 - 1
Men 04_5010 +Me7-[ C'6_56'8 FZ(H) 9 (12)
1
M(fon) = E{[(Men 4 Moy + Mot + Mog) Co+ (Fan + Fig)as] + Fupao fo } F1 (0) Fy (sb)—&{ {Fcﬁ’f (aG—Eag) +

1 1 1
(Men + Moy + Mg+ M) (03 +20:=5C+ 5010) + (ML + Mo+ ME + M) (05 - §C7> +

1 1 1 1
(]\4;’]2 +M;2 +Mel:;2 +M;2) (206 —+ 508> —+ (Faﬂ +Fcffq+Faf) (2(13 +a4—2a5 — 5@74‘ §a9 — 5@10) +

1 1 1
(F;]2+F£2+F;2) (aﬁ—iag) :|F1(9)F1(¢)+ |:(Fan +Feffs+Faf) (G/g—a/5+§a/7_ 5@9) +

1 1
(Meyy+ My + Moy + M) (C4 — §C1o> + (M;)]ZM;]z +M§2 +M;2) (Cs — §CS> ] Fy(0)Fy ()}, (13)

where &, = Vi Vi, & = Vit Via, Fi(0) =sinf/v/2 and | M(B® — fy1) can be obtained from M (B® — fy1) in
F,(0) = cosf are the mixing factors for the f,(980) me- Eq. (13) by replacements of Fy(¢) — F/ = sin¢/v/2
son, while F(¢) = cos¢/v/2 and F,(¢) = —sin¢ are and Fy(¢) — F3 =cos¢.

the mixing factors for the n-n’ system. For the B — The Wilson coefficients a; in Egs. (11)—(13) are
£,(980)1" decay, the corresponding decay amplitude the combinations of the ordinary Wilson coefficients
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Ci(p), The non-zero individual decay amplitudes in
C, Egs. (11)—(13), such as FT2, M.., ME! MF? ...

Cy
ap = Cot 3 27 Cit 3 are obtained by evaluating analytically the different

oot GE o imase, e TYendensn Fi L ForB (080 nd
a; = Oi+0i3*1, for i=4,6,8,10.
@ g o £ f
B F ") B ~ F w0 B ") B n(n)
@ ®) © @
\/ ) ) ) f°
xn*) /\‘\nm“) ") rn®)
© ® © )

Fig. 1. Typical Feynman diagrams contributing to the B — fy (980)7‘[(1](')) decays at the leading order.

1
Felj.[z = —167TCFméT‘fffJ'

0

')

d$1d$3J

0

bldbl bgdbg ¢B (Il,bl){[éﬁ(ffg) +T'7-[./L'3(¢£ (fﬂg) _(pz(!@g)) +

27’7-[§I)§ (CCg)]EC,L (t)hc (CCl y .Ig,bl,bg) + 27’7-[§p§ (CCg)ECi (tl)hc (I3,$1 5 b3, bl)} 5 (15)

1 o)
Merr = 327‘[01:‘7’”%/\/ 2NCJ dxldfﬂzdng' bldbl bgdbz @B(.Tl,bl)éf(ffg) X
0

0

{[(1 — ) Pr(w3) = s (P (25) — P (3))| B () o (21, T2, 23, b1, by) —

(22 22)P () —w@i(xg)+¢:<x3>>]Egi<t'>hn<xi,bl,b2>} , (16)
P1 32 4 ! > ! —
Merr = %T[OFmBTf dIldIQdI3 bldbl bzdeQB(.fCl,bl) Eei(t)hn(l'17.’172,$3,b1,b2)X
0 0

[(2 = 1)@r (3) (PF (22) + BF (2)) + 7 (w2 — 1)(D7;(w5) — P (w3)) (5 (w2) + Py (72)) —
123 (P (23) + P (23))(DF (22) = Py (22))] + B (¢)ha (3, b1, b2) X

[22®7 (3)(DF (w2) — DF (22)) + T (P, (w3) — P (5) ) (PF (w2) — DF (22)) +

s (7 (23) + B () (05 () + B ()] } , an)

32 1 ']
Mz — 320 m4j
V6 e 0

Tris (P (23) + P (23)) ]| EL (E)ha (21, T2, 3, b1, b2) +

dIldIQdI3 J

0

bldbl bgdbg QB (CCl y bl)gpf(xz){ I:(Ig — T3 — 1)@2(.@3) +

[3:2@?(:03) — w3 (Py (23) —@E(:@))} EL(t"hy(z;, by, bz)} , (18)
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Man %HC’FméJ:dxldxzdx3j:ob1db1bzdb2¢B(z1,b1){[—xzéﬁ(x3)¢f(z2)+
rare®F (22) (w2 + 25 — V)P (x3) + (— @2 + 25+ 1) Pk (23)) + 77D (2) (w2 — 25+ 3) P (23) —
(2 + 25— V)T (25)) | ELu (6) hua (1,0, 35, b1,b2) — By ()Wl (1,2, T3, by, b) X
(23— 1) D5 (3) P (2) + 17 D5 (1) (w2 — w5+ 1)PL (23) — (w2 + 23 — 1) P (23)) +
Pt ®F (22) (2 + 5 — 1B (25) — (142 —xg)gzs:(%))]} : (19)
ME! %ncFm;J:dxldxgdngbldblbgdbg%(xl,bl){[rn(1+x3)¢f(x2)@:(x3)—¢§(x3))+
re(20 = 2) D (23) (PF (22) + ] (22)) ]| Ely (1) hna (21,22, 23, b1, b2) — [ (05 — 1) P (2) (D (5) —
P (w3)) + 115D (23)(DF (22) + D7 (22))] E;i(tl)h;;a(‘rl"r%I37b1’b2)} ; (20)
M2 —%ncFm‘g J: dz,dzodes J:o bydb, bydb, Py (xl,bl){ (3 — 1)P¢ (2) P (5) + Arnr P (22) P (3) +
P (22 — 23 = 1) (P (23)PF () — D (2)Pf (22)) — (w2 + 25 — 1)(Pr, (23)Df (22) — P (w3) Py (502))] X
EL () hna (@1, 22,23, b1,b2) + [22P¢ (22) P (03) — o7 (BF (22) + DF (22)) (P (3) — P (23)) —
rre(1—23) (PF (22) = BF () )(Pr; (w5) + P (3)) | By (8 )y (1,2, 5,01, Do ) (21)
1 oo
F,n = —FF! =8nCemi, f J'O dxydas J'O bodby bgdbg{ [(:Eg —1)P2 (23)Ps (22) — 27n7¢ (15 — 2)BE (23) B (12) +
271723 DY (15) D7 (:102)} Eai()ho (22,1 —13,by,bs) + [22P5 (23)Ps (12) — 27,7 PE (13) (w2 + 1)BF (22) +
(552_1)¢?)]Ea¢(t/)ha(1—%axzab:’nbz)}a (22)
FP? = —16mCymyp [ r dzodxs JOO badby b3dbs {[r7T (13— 1)Pg(22) (P (23) + DL (23)) + 2P (13)DF (15)] X
0 0
Eqi(t)ha (22, %5, ba,b3) — [2r,Ph (23) P (22) + 1e20Pit (23) (PF (22) —
@?(fg))]Eai(t,)ha(w‘g,,xg,bg,bg)} ; (23)
1 oo
Fy = Fi'=8nCem fr L dzidx, L b1db; bodby @B(zl,bl){[(l +22)®r(23) — 75 (1 — 225) (D5 (m2) + BF ()] %
Eoi(t)he(21,20,b1,by) — 27¢®F (1) B (t' ) he (22, 71, bz,bl)} , (24)
1 oo
FI? = 16nCrmg frrn J'O dxldng' bydb; bydb, P (21, bl){ — [ B¢ (w2) +re(22P] (w2) — (22 +2)PF (22))] X

0

Eei(t)he(x17x2u b17b2) +2Tf¢fs(x2)Eei (t,)he(x27xlub27bl)} ) (25)
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32 [ =~ A S T
Mcf = %T[OFmB d.fldflfgdl':; bldbl bgdbg @B(xl,b1)¢7_( (I3) — [(ch—l)@f(:cz)—rfxz(¢f (CCQ)—QI)f (CCQ))] X
0 0

P1
ef T

P2 __
ef

Pl _
M =

P2 __
Faf -

= —ﬂCFm‘ér,,J'

EL () ha (21,1 —23,25,01,b3) + [~ (22 +23) s (22) — 7522 (4’?(552) +¢?($2))]E&(t')hn($1a333,3327b17b3)} )
(26)

1 oo

32
deldezde'g J’

0

\/6 bldbl bgdbg ¢B (xl,bl){E;i(t)hn(xl, 1 _.Tg,flfg,bl,bg) X

(w5 = 1)@s(2) (P}, (w3) + Dr (w3)) + 7507 (22) (w2 + 25 — 1)Py (w3) + (—w2 + 25 — 1) P (23)) +

0

1e®F (22) (w2 — 5+ )P (5) — (22 + 25 — 1) (23))] + [—23 P (22) (P (w5) — Dy, (23)) — 705 (PF (22) —

@?(xz))@i(%) —4’:(503)) - Tfﬂfz(@fs(xz) +¢?($2))(¢5 (z3) +¢):(z3))]Eéi(tl)hﬂ(‘r1"r37I27b17b3)} , (27)

1 e}

32
deldezdeg J’

0

7 bydby bydby B (1,b1) P (23) { (3 —xo—1)Pp(as) —

7522 (Pf (22) + Bf (22))| Bl (6 ha (21,1 = 22,3, b1, ba) + [0 D (2) + 162 (BF (2) — Bf (2))] %

0

EL(E (et . (28)

32 1 o]
_%T[OFmAlBJV dI’ldegde:gJ' bldbl b3db3 @B(xl,bl){[I3¢:(I3)¢f($2>+7’7-['I"f§pr(CC2) X
0 0

(22 =25+ 1)P (23) — (T2 + 23 — )P (23)) + 77D} (22) ((— T2+ 3 + 3)P], (3) + (22 + 23 — 1) D (23))] X
E;i(t)hna(xl7x37$27b17b3) +E;i(t/)h;a($1a$37$2ab17bs)[(iﬁz - 1)¢:($3)¢f($2) +

e Df (22) (=2 + 23+ 1)P) (03) — (22 + 75 — 1)D} (23)) +

1 DF (2) (22 — 25 — 1) DL (25) + (22 + 25 — 1)433(503))]} ) (29)
%ncmé Jldxldxzdx3jwb1db1 bgdbgqu(xl,bl){[rf(zz+1)¢¢(x3)(¢§(x2)—¢}(z2))+

T3 = 2)De(22) (P (23) + D (23))| Bl (1) hna (21, T3, 2, b1, bg) — [ (22 — 1) PR (23) (P (5) —

BF (23)) + 1awsPe (22) (P}, (23) + P (3))| B, () iy (1,23, 2, b, 53)} . (30)

1 o
= F;l = SHOFméfBJ dIng3J bgdbg b3db3 { [(CCQ — 1)¢$($3)¢f (IEQ) + 27"7-[7"10(562 — 2)@5 (I3)§pfs (Ig) —

0 0

27 72 ®@F (13)BF ()| Eai () ha (23,1 — 22, b3,b2) + [m@ﬁ (23)P¢(22)+ 21"717343? (22)((w3+1)PL (w3) +

(@3 = 1)1 (23))] Eai (') ha (1 — 22,25, b2, b3 )} (31)
16mCrmy [ J'1 dzydrs JOO bydb, bydbs {[Tf(xg — 1) (23)(DF (w2) + By (w2)) — 27 BF (25)Ps (2)] X

Eoi(t)ha(3,%2,by,b3) — [27:Ph (23)DF (12) + 13 Pe (22) (PF (23) — PE (5))] ¥

Eai(tl)h’a(l_‘T27I37b27b3)}5 (32)
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where r; =mg/mg and r, =mJ/mg. The explicit ex-
pressions of hard functions ES,; () and he (:,b;), -
can be found for example in Ref. [16]. For B® —
£,(980)n" decays, one can find the corresponding de-
cay amplitudes from those given in Egs. (15)—(32)
by simple replacements.

3 Numerical results and discussions

For numerical calculation, we will use the follow-
ing input parameters:

m(f,(980)) = 0.98 GeV, m,=0.14 GeV,
m, = 547.5 MeV, m,, =957.8 MeV,
My = 5.28 GeV, mg=1.4 GeV,
My = 80.42 GeV, fi, =(0.3740.02) GeV
fs = 0.19 GeV, f.=0.13 GeV,
Tae = 1.671 ps, 7o =1.536 ps,
Vi = 0.9997, [Via| =0.0082,
Vaa = 0.974,  |Vip| =0.00367, (33)

with the CKM angle §=21.6° and v =60°. |

It is straightforward to calculate the branching ra-
tios of the considered decays. If {,(980) is purely com-
posed of fin, the pQCD predictions for the branching
ratios are

B(B° — £,(980)m°)

+0.1040.1640.05 —6
(0-89—0.08—0.1370.03) x1077,

B(B™ —1£,(980)n7) = (16.473:¢7157075) x 107°,

B(B® —£,(980)n) = (2.050:370:50:1) x 1077,

BB — £,(980)1") = (13%43753789) x 10°°, (34)

where the theoretical uncertainties are from the de-
cay constant of f;, =0.3740.02 GeV, the Gegenbauer
moments B; = —0.78 +0.08 and Bs; = 0.02+0.07. If
£,(980) is purely composed of §s, the branching ratios
will be

B(B® — £,(980)7°) = (4.6625:33"5515.08) x 1077,

B(B™ —£,(980)77) = (8.5651 101 0700) X 107%,

B(B® — £,(980)n) = (0.2475:65 603 00) x 107°,

B(B® —£,(980)n') = (0.3810-05+0-0410.04) , 1()—6
(35)

where the theoretical uncertainties are from the same
hadron parameters as above.

Table 1. The pQCD predictions (in unit of 107%) for the branching ratios of B — fo(980)m, fo (980)1](’) decays.

channel 01 =32.5°+7.5° 0 = 152.5° +12.5° datal™! Qcpr!Y
Br(B~ — f0(980)1~) 2.5+1.0 16758 <3.0 0.9
Br(BY — £o(980)7) 0.26+0.06 0.04715:5¢ 0.03
Br(BY — £5(980)n) 0.25-£0.07 0.59-0.20 <0.4
Br(BY — £,(980)n') 0.67£0.06 0.26£0.03 <15

Table 2. The pQCD predictions (in units of 1072) for the CP-violating asymmetries of B — fo(980),
fo(980)n"") decays.
channel A%lfa Ace
61 =[25°,40°] 02 = [140°,165°] 61 =[25°,40°] 0 = [140°,165°]

B~ — f5(980)~ (50, 64] [—39,7.0]
B0 — £,(980)m° [~7.5,—2.3] [~99, —56] ~—69 [-25,7.1]
B% — £,(980)n [—43,—5.0] [—-55,—30] [-72,12] [-63,—23]
BY — £0(980)n’ [—42,-28] [-29,8.5] [-57,—38] [~75,—38]

When £,(980) is treated as a mixing state of oin
and Ss, the leading order pQCD predictions are listed
in Table 1, where the two ranges of the mixing angle 6,

1 =[25°,40°] and 0, = [140°,165°], are taken into ac-
count. The QCDF predictions as given in Ref. [11] are
also listed in Table 1 as a comparison. The remain-
ing theoretical uncertainties induced by the errors of
other input parameters and the wave functions are

| generally 30%—50%, and not shown here explicitly.
In Fig. 2, we show the #-dependence of the central
values of the pQCD predictions for the branching ra-
tios of the four considered decays. One should note
that the large theoretical uncertainties of the pQCD
The two
vertical bands show the two ranges of the mixing an-

predictions are not shown here explicitly.

gle 0 preferred by the known experiments!'?, while



ZHANG Zhi-Qing et al: B — £0(980)(r,n(")) decays in the PQCD approach 515

No. 7

8+ (@)

L

T oer

z ‘L

2 v

g 2f |

< /4

NV
7

1.6
,,,,,, / (b)

Al

< 08 -

)

€ 04 =

S 7

| | | | |
0 20 40 60 80 100 120 140 160 180
0/(°)
Fig. 2. The 6-dependence of the central val-

ues of the pQCD predictions for the branch-
ing ratios of (a) B — £,(980)7 decays, and (b)
B? — fon® decays.

the three horizontal solid or dots lines show the cor-
responding experimental upper limits!'? as listed in
Table 1. From the numerical results as shown in Ta-
ble 1 and Fig. 2, one can not distinguish two regions
of the mixing angle # from currently available data, if
the still large theoretical uncertainties are taken into
account.

Now we turn to the evaluations of the CP-
violating asymmetries of B — £,(980), £,(980)n"") de-
cays in the pQCD approach. The pQCD predictions
for the direct C'P-violating asymmetries of the four
considered decays are listed in Table 2. Although the
C P-violating asymmetries are large in size, it is still
difficult to measure them, since their branching ratios
are generally very small, say around 10~5—1078.

In this paper, based on the assumption of a two-
quark structure of the scalar meson f,(980), we cal-
culated the branching ratios and C'P-violating asym-
metries of the four B — f,(980)7t and B® — f,(980)n")
decays by employing the leading order pQCD factor-
ization approach. The pQCD predictions are gener-
ally consistent with both the QCDF predictions and
the currently available experimental upper limits.
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