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Lorentz violation constrained by triplicity of lepton

families and neutrino oscillations
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Abstract In this paper we postulate an algebraic model to relate the triplet characteristic of lepton families

to Lorentz violation. Inspired by the two-to-one mapping between the group SL(2,C) and the Lorentz group

via the Pauli grading (the elements of SL(2,C) expressed by direct sum of unit matrix and generators of SU(2)

group), we grade the SL(3,C) group with the generators of SU(3), i. e. the Gell-Mann matrices, then express

the SU(3) group in terms of three SU(2) subgroups, each of which stands for a lepton species and is mapped

into the proper Lorentz group as in the case of the group SL(2,C). If the mapping from group SL(3,C) to

the Lorentz group is constructed by choosing one SU(2) subgroup as basis, then the other two subgroups

display their impact only by one more additional generator to that of the original Lorentz group. Applying

the mapping result to the Dirac equation, it is found that only when the kinetic vertex γµ ∂µ
is extended to

encompass γ5γµ ∂µ
can the Dirac-equation-form be conserved. The generalized vertex is useful in producing

neutrino oscillations and mass differences.
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1 Introduction

The possible breaking of Lorentz symmetry (BLS)

has been put forward from different aspects[1—4] as

a low energy limit of a more fundamental theory at

sufficiently high energy scale. Practically and in-

triguingly, the BLS has been applied to the neu-

trino sector to study the oscillation and the origin

of masses[1, 5—7]. There the Dirac equation is written

with a general form to include all possible gamma

matrices[1],

(iΓ ν
AB ∂ν −MAB)νB = 0 , (1)

where the indices A, B are responsible for the neu-

trino species, and Γ ν
AB , MAB are 4× 4 matrices in

spinor space including all the possible bases of γ ma-

trices. The most recent MiniBooNE experiment[8]

convincingly denied the possible existence of sterile

neutrinos observed previously by liquid scintillator

neutrino detector (LSND)[9]. Therefore the above

mentioned mechanism to account for the oscillations

of sterile neutrinos via generalizing Γ ν
AB becomes un-

necessary.

The lepton families of the standard model are also

of much interest[10—16]. In this paper we will not be

very much involved in the origin[10—15] of the three

families or the possibility of the existence of more

lepton families[16]. We straightforwardly employ the

fact that there are just three families of leptons and

associate it with the Lorentz violation. It is found

that under the constraints from the triplicity of lep-

ton families and the denial of sterile neutrinos, specu-

lations on Lorentz violation (extension) as in Eq. (1)

are still possible.

The remainder of the paper is arranged as follows:

in the next section, we briefly review the mapping be-

tween the group SL(2,C) and the Lorentz group. In

the third section, we construct a similar mapping be-

tween SL(3,C) and the Lorentz group, and also con-

sider the question of what would be the consequence

if one chooses one SU(2) subgroup as a mapping ba-

sis (the concept “mapping basis” will be elucidated

later). The fourth section is dedicated to apply the

result of the previous section to the Dirac Equation.

The concluding remarks are presented in the last sec-

tion.
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2 Review of the relationship between

the group SL(2,C) and the Lorentz

group

Each element of the group SL(2,C) has the form

g=

(

a b

c d

)

, (2)

where a, b, c, d are complex numbers and detg =

ad−bc= 1, which means Re(detg)=1 and Im(detg)=0

and thus leaves from the original 8 parameters of g 6

which can be chosen free. Equivalently Eq. (2) can

be expressed in the form

g= gµσ
µ , (3)

where gµ (µ= 0, 1, 2, 3) are complex numbers, and

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

,

σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (4)

In the above expressions a contravariant vector com-

ponent W µ = (W0, ~W ) and its covariant compo-

nents Wµ = (W0, ~W ) are conventionally linked by

W µ = gµνWν , where

gµν =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













.

Let’s introduce a matrix form Q related to the coor-

dinates of space-time xµ = (x0,−~x) as follows

Q=xµσ
µ , (5)

from which we obviously obtain

detQ=x2
0−x

2
1−x

2
2−x

2
3 . (6)

We further define a transformation of Q by

Q′ = gQg+ , (7)

where Q′ =x′

µσ
µ, and xµ transforms under a Lorentz

transformation according to

x′

µ =Λα
µxα . (8)

From Eqs. (6), (8) we conclude that detQ (= detQ′)

is an invariant quantity. From Eqs. (5), (7), the trans-

formation of xµ yields

x′α = δα
βx

′β =
1

2
Tr(σασβ)x′

β =
1

2
Tr(σαQ′) =

1

2
Tr(σαgQg+) =

1

2
Tr(σαgσβg+)xβ . (9)

Then, comparing Eq. (9) with the transformation

Eq. (8), we can obtain a mapping between the Lorentz

group and the elements g of SL(2,C),

Λαβ =
1

2
Tr(σαgσβg+), (10)

for example, Λ0
0 = |g0|

2
+

3
∑

k=1

|gk|
2
. From Eq. (10) we

can also obtain g expressed through the elements of

the Lorentz transformation[17]:

g = g0σ
0 +

3
∑

k=1

gkσk =

D−1

[

Trσ0 +
3
∑

k=1

Λk
0 +Λ0

k− iε0kρ

λ Λλ
ρ

]

σk , (11)

where D2 = 4−TrΛ2 +(TrΛ)2− iεµλ
ρτΛ

τ
λΛ

ρ
µ.

According to Eqs. (10), (11), the following Lorentz

transformations and elements of SL(2,C) can be de-

rived which are equivalent. The typical two to one

mapping shows up in the arguments of κ and κ/2.

elements of SL(2,C) Lorentz transformations Λµ
ν

±





cosh
κ

2
sinh

κ

2

sinh
κ

2
cosh

κ

2























coshκ sinhκ 0 0

sinhκ coshκ 0 0

0 0 1 0

0 0 0 1



















±





cosh
κ

2
isinh

κ

2

−i sinh
κ

2
cosh

κ

2























coshκ 0 sinhκ 0

0 1 0 0

sinhκ 0 coshκ 0

0 0 0 1



















±









exp

[

κ

2

]

0

0 exp

[

−
κ

2

]



























coshκ 0 0 sinhκ

0 1 0 0

0 0 1 0

sinhκ 0 0 coshκ



















±





cos
κ

2
isin

κ

2

isin
κ

2
cos

κ

2























1 0 0 0

0 1 0 0

0 0 cosκ −sinκ

0 0 sinκ cosκ


















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±





cos
κ

2
−sin

κ

2

sin
κ

2
cos

κ

2























1 0 0 0

0 cosκ 0 sinκ

0 0 1 0

0 −sinκ 0 cosκ



















±









exp

[

i
κ

2

]

0

0 exp

[

− i
κ

2

]



























1 0 0 0

0 cosκ −sinκ 0

0 sinκ cosκ 0

0 0 0 1



















(12)

where the first three matrices represent Lorentz

boosts, and last three matrices represent Lorentz ro-

tations, and κ stands for the rapidity. Notice that all

the elements in the first column are independent and

can be written in the form of Eq. (3). Therefore the

two columns can be seen as the generating elements of

the Lorentz group and SL(2,C). We obtain the gen-

erators for the two groups by taking the derivatives

of these matrices with respect to κ at κ= 0.

3 Associating the group SL(3,C) with

the Lorentz group

It is known that the group SL(3,C) has Pauli

gradings[18—20], and it is easy to prove that the Pauli

grading matrices and the generators of the group

SU(3) can be mutually lineally expressed. We use

here the generators of the group SU(3) in the Gell-

Mann representation

λ1 =









0 1 0

1 0 0

0 0 0









, λ2 =









0 −i 0

i 0 0

0 0 0









,

λ3 =









1 0 0

0 −1 0

0 0 0









, λ4 =









0 0 1

0 0 0

1 0 0









,

λ5 =









0 0 −i

0 0 0

i 0 0









, λ6 =









0 0 0

0 0 1

0 1 0









,

λ7 =









0 0 0

0 0 −i

0 i 0









, λ8 =









1 0 0

0 1 0

0 0 −2









. (13)

We can divide the SU(3) group into three relevant

parts by grouping the generators as follows

Γ1 = {λ1, λ2,λ3}, Γ2 = {λ4, λ5,









1 0 0

0 0 0

0 0 −1









},

Γ3 = {λ6, λ7,









0 0 0

0 1 0

0 0 −1









}, (14)

where









1 0 0

0 0 0

0 0 −1









and









0 0 0

0 1 0

0 0 −1









can be derived

by combining λ3 and λ8. It is obvious that Γ1, Γ2, Γ3

are bases for three SU(2) groups satisfying the com-

mutations of Pauli matrices. Inspired by the Eq. (3),

(4), adding a unit matrix









1 0 0

0 1 0

0 0 1









separately to Γ1,

Γ2, Γ3 we have three bases

Γ1 = {I3×3, λ1, λ2,λ3},

Γ2 = {I3×3, λ4, λ5,









1 0 0

0 0 0

0 0 −1









},

Γ3 = {I3×3, λ6, λ7,









0 0 0

0 1 0

0 0 −1









}, (15)

which can be mapped to the Lorentz group as shown

in the last section, for example, the Lorentz group

mapped from Γ1 has the same form as in Eq. (10)

Λαβ =
1

2
Tr(λαgλβg+) . (16)

We note that now the element g of SL(2,C) comes

from the linear combination of I3×3, λ1, λ2,λ3. Here-

after we name the λα, λβ in Eq. (16) the basis of the

mapping. From Eq. (16), it can be proved that ex-

cept for Λ0
0 =

3

2
|g0|

2
+

3
∑

k=1

|gk|
2
, which has a different

coefficient in front of |g0|
2

and therefore differs from

Λ0
0 in Eq. (10) [This remnant coefficient

3

2
, which can

be cancel by an additional boost, will not affect the

generating of Lorentz group], the other components

such as Λ0
i, Λ

i
0 and Λj

k are all the same as those orig-

inating from Eq. (10). Similar mappings from Γ2 and

Γ3 to the Lorentz group can be constructed and lead

to the same result. We use these three mappings to

characterized the three lepton families.
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According to Eq. (16), we can construct the par-

allelism between the set {I3×3, λ1, λ2,λ3} and Lorentz

group by calculating the following matrices which re-

semble those of Eq. (2):

elements ofSL(2,C) Lorentz transformations Λα
β

±











cosh
κ

2
sinh

κ

2
0

sinh
κ

2
cosh

κ

2
0

0 0 cosh
κ

2



























5

4
coshκ+

1

4
sinhκ 0 0

sinhκ coshκ 0 0

0 0 1 0

0 0 0 1

















±











cosh
κ

2
isinh

κ

2
0

−i sinh
κ

2
cosh

κ

2
0

0 0 cosh
κ

2



























5

4
coshκ+

1

4
0 −sinhκ 0

0 1 0 0

−sinhκ 0 coshκ 0

0 0 0 1

















±













exp

[

κ

2

]

0 0

0 exp

[

−
κ

2

]

0

0 0 0



























coshκ 0 0 sinhκ

0 1 0 0

0 0 1 0

sinhκ 0 0 coshκ















±











cos
κ

2
isin

κ

2
0

isin
κ

2
cos

κ

2
0

0 0 cos
κ

2



























1+
1

2
cos2

κ

2
0 0 0

0 1 0 0

0 0 cosκ sinκ

0 0 −sinκ cosκ

















±











cos
κ

2
−sin

κ

2
0

sin
κ

2
cos

κ

2
0

0 0 cos
κ

2



























1+
1

2
cos2

κ

2
0 0 0

0 cosκ 0 sinκ

0 0 1 0

0 −sinκ 0 cosκ

















±















exp

[

i
κ

2

]

0 0

0 exp

[

− i
κ

2

]

0

0 0 0































1 0 0 0

0 cosκ sinκ 0

0 −sinκ cosκ 0

0 0 0 1

















.

(17)

Here we have used as generating elements of

SL(2,C) the 3×3 matrices originating from the set

{I3×3, λ1, λ2,λ3}. We note that in the second column,

for the Lorentz group, some matrix elements have

undergone subtle changes as compared with those of

Eq. (12). All changes occur in the (1, 1) elements. In

the first matrix for example, the original (1, 1) ele-

ment coshκ is replaced by
5

4
coshκ+

1

4
. But by taking

the derivative, one finds this sort of changes doesn’t

alter the generators of the Lorentz group, and thus

these changes are trivial.

The displayed matrices in Eq. (17) show the map-

ping from Γ1 to the Lorentz group. In nature, only

one Lorentz group should occur. So how the map-

pings from Γ2 and Γ3 to the Lorentz group manifest

their existence is worth studying. Merely in form, we

denote the three equivalent Lorentz groups, which are

separately produced from Γ1, Γ2 and Γ3, by L1, L2,

L3. Now we design a mapping that projects Γ2 and
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Γ3 also into L1. Based on Eq. (16), we choose the

basis λα, λβ , still from the set I3×3, λ1, λ2,λ3, but

the matrix g from the combination of the elements of

set Γ2 or Γ3. For example, if the matrix g comes from

the linear combination of elements in Γ2, we obtain

in analogy to the matrices in Eq. (17), the following

result:

elements of SL(2,C) Quasi-Lorentz tansformations
[

χ= cosh2 κ

2
, ς = sinh2 κ

2
, χ̄= cos2

κ

2
and ς̄ = sin2 κ

2

]











cosh
κ

2
0 sinh

κ

2
0 cosh

κ

2
0

sinh
κ

2
0 cosh

κ

2



























3

2
χ+ ς 0 0

1

2
ς

0 χ 0 0

0 0 χ 0
1

2
ς 0 0 χ



























cosh
κ

2
0 isinh

κ

2
0 cosh

κ

2
0

−i sinh
κ

2
0 cosh

κ

2



























3

2
χ+ ς 0 0

1

2
ς

0 χ 0 0

0 0 χ 0
1

2
ς 0 0 χ





























exp

[

κ

2

]

0 0

0 0 0

0 0 exp

[

−
κ

2

]





























coshκ 0 0
1

2
exp[κ]

0 0 0 0

0 0 0 0
1

2
exp[κ] 0 0

1

2
exp[κ]



























cos
κ

2
0 isin

κ

2
0 cos

κ

2
0

isin
κ

2
0 cos

κ

2



























1+
1

2
χ̄ 0 0

1

2
ς̄

0 χ̄ 0 0

0 0 χ̄ 0
1

2
ς̄ 0 0 χ̄



























cos
κ

2
0 −sin

κ

2
0 cos

κ

2
0

sin
κ

2
0 cos

κ

2



























1+
1

2
χ̄ 0 0

1

2
ς̄

0 χ̄ 0 0

0 0 χ̄ 0
1

2
ς̄ 0 0 χ̄





























exp

[

i
κ

2

]

0 0

0 0 0

0 0 exp

[

− i
κ

2

]





























1 0 0
1

2
0 0 0 0

0 0 0 0
1

2
0 0

1

2

















.

(18)

Almost the same matrices would appear if in

Eq. (16) the mapping basis comes as before from Γ1,

but the matrix g results from a linear combination of

elements of Γ3, with some unimportant signs altered.

In the column of the Quasi-Lorentz transformations,

we find that after performing the derivatives with re-

spect to κ at κ= 0, only the third matrix leads to a

nontrivial generator,

















0 0 0
1

2
0 0 0 0

0 0 0 0
1

2
0 0

1

2

















. (19)
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Remembering that













0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0













is also a generator of

original Lorentz group, so the effective part of this

new generator in Eq. (19) may be written as












0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1













. (20)

We call this matrix an extension of the Lorentz gen-

erators. The Quasi-Lorentz matrices due to the map-

ping of Γ3 give the same results. If in Eq. (16) we

choose λα, λβ from the set Γ2, and the matrix g in

turn from the combination of the elements in set Γ1

and Γ3, we will obtain the same results, and again

the same if we choose λα, λβ from the set Γ3, and so

forth. In what follows we confine ourselves to use the

results from Eqs. (18) and (19) without loss of the

generality.

4 The extension of the kinetic vertex

of the Dirac equation

Free leptons in each of the families should satisfy

the Dirac equation,

γµi∂µ
ψ=mψ , (21)

but this equation will not be accurate if the above

extension of the Lorentz generators is accepted. We

will elucidate this point of view in this section.

We here define the γµ as the kinetic vertex of the

Dirac equation (the concrete forms of γµ and γ5 used

here are those standard ones presented in many text

books, see for example the appendix A of Ref. [21]).

Performing the Lorentz transformation Eq. (8) on

both sides of the Dirac equation and at the same time

assuming that ψ transforms according to

ψ′(x′) =S−1ψ(x) , (22)

where S is a nonsingular 4 × 4 matrix, then one

concludes[21] that

S−1γµS= γνΛ
ν
µ . (23)

Let us introduce in explicit form the infinitesimal

Lorentz transformation Λν
µ = δν

µ+ω
ν
µ, where the ων

µ are

the infitesimal parameters of the Lorentz transforma-

tion and can be written in terms of an infiniteseimal

antisymmetric tensor ελ µ as ων
µ = gν λελ µ

[21]. Sub-

stituting this into Eq. (23) and making some minor

manipulations, we get

γµS−Sγµ = [γµ, S] =Sων
µ γν . (24)

If we write now S in terms of the infinitesimal Lorentz

transformation

S= 1+εµνS
µν , (25)

then to first order, Eq. (24) can be written

[γµ, εµνS
µν ] = ων

µ γν , (26)

from this we find the solution of Eq. (26) as:

Sµν =
1

2
γµγν . (27)

The above formulae of this section are based on

the conventional Lorentz generators. If a generator

like matrix the Eq. (20) appears, then to preserve the

form of the Dirac equation

Γµ ∂µ
ψ=mψ , (28)

its transforming relation Eq. (26) must be altered

correspondingly. Roughly we can first rewrite the

general form as

[Γµ, ε̄µνS
µν ] = ω̄ν

µ γν , (29)

where ω̄ν
µ now only ω̄3

3 is nontrivial, and ε̄µν may not

be antisymmetric any longer. If we extend the matrix

Eq. (20) to the unit matrix, i.e.












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













, (30)

then it is found that with Γµ = γµ(1+γ5) and ε̄µνS
µν =

ω̄ν
µ

2
γ5, the Eq. (29) can be satisfied. This means that

the kinetic vertex of the Dirac equation has been ex-

tended to include γµ(1 + γ5), and the Lorentz gen-

erators in spinor space {
1

2
γµγν} have been extended

to include γ5. We call the set {γ5,{
1

2
γµγν}} an ex-

tended Lorentz group (in spinor representation): the

group Closure condition is kept by recognizing that

the product of γ5 and any
1

2
γµγν is still in the set

{
1

2
γµγν}, and their commutator [γ5,

1

2
γµγν ] = 0; γ5

and {
1

2
γµγν} actually form a group, in which γ5

turns out to be an identity element. And the anti-

symmetric characteristic of elements of Lorentz group

is lost due to the feature of γ5. So now the Dirac
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equation can be written

γµ[(1+w)+wγ5]i∂µ
ψ=mψ , (31)

where w is a little parameter determined according

to specific situation. If we don’t make the extension

(30), then ω̄3
3 only allows γ3 to appear in the right

hand of Eq. (29), and the original general solution

shrinks to
[

γ3(1+γ5),
ω̄3

3

2
γ5

]

= ω̄3
3 γ3 , (32)

and correspondingly the Dirac equation in the form

Eq. (31) becomes

γµ(1+g3 µwγ5)i∂µ
ψ=mψ . (33)

5 Summary and discussion

On the basis of Eq. (16), a mapping from the

group SL(3,C) to the Lorentz group is proposed. By

this mapping we find that the lepton families and

Lorentz violation can be of relevance. The mapping

leads to a high degeneracy of the elements in the

group SL(3,C) since we finally map three SU(2) sub-

groups into one Lorentz group: we grade the SL(3,C)

group with the generators of SU(3), i. e. with the

Gell-Mann matrices, then express the SU(3) group

with three SU(2) subgroups, each of which stands for

a lepton species and can be mapped into the proper

Lorentz group as in the case of the group SL(2,C).

If the mapping from SL(3,C) to the Lorentz group

is constructed by choosing one SU(2) subgroup as a

mapping basis, then the other two subgroups display

their impacts only by one more additional generator

as compared to the original Lorentz group.

Subsequently we apply the results of this map-

ping to the generalized form of Dirac equation, and

find only if the kinetic vertex γµ ∂µ
is extended to

encompass the part γ5γµ ∂µ
can the Dirac-equation-

form be conserved. This is the constraint from the

families’ triplicity. In view of Eq. (31) it still leaves

some possibilities allows us to freely adjust the pa-

rameter w. As in Ref. [1], by taking out the term

i∂0 in Eq. (31) by multiplying with a certain matrix

A, then the Hamiltonian can be obtained, and subse-

quently ∆H can be derived. Obviously, in our case,

only if the parameter w is not equal to −
1

2
(when the

rank of matrix before i∂0 is not larger than 3), we can

give the effective ∆H , and thus following the steps of

Ref. [1] the oscillations due to sterile neutrinos can

be obtained. So, to avoid the existence of sterile neu-

trinos, the parameter w must be −
1

2
. In this respect

it shows that we get an apparently covariant Dirac

equation of the form

γµ(1−γ5)i∂µ
ψ= 2mψ , (34)

but we should take care to transform it according to

the generalized Lorentz group with one more gener-

ator shown in Eq. (20). This is the constraint from

the denial of sterile neutrinos. If the form Eq. (33) is

not extended, the effective ∆H would exist anyway

since the coefficient g3µw induces both the Lorentz

violation and CPT violation. Despite the discussion

of sterile neutrinos, these violations at least provide

a mechanism to account for neutrino oscillations and

produce mass differences. In this context many pos-

sible corollaries are open to be addressed by experi-

ments.
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