
CPC(HEP & NP), 2009, 33(4): 249—251 Chinese Physics C Vol. 33, No. 4, Apr., 2009

Bipartite entanglement in a two-qubit Heisenberg XXZ

chain under an inhomogeneous magnetic field
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Abstract This paper investigates the bipartite entanglement of a two-qubit Heisenberg XXZ chain under an

inhomogeneous magnetic field. By the concept of negativity, we find that the inhomogeneity of the magnetic

field may induce entanglement and the critical magnetic field is independent of Jz. We also find that the

entanglement is symmetric with respect to a zero magnetic field. The anisotropy parameter Jz may enhance

the entanglement.
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1 Introduction

Quantum entanglement plays a central role in

quantum information processing (QIP)[1—5] and con-

densed matter physics. The main motivation behind

such interest is twofold: On the one hand, entangle-

ment is a unique quantum mechanical resource that

plays a key role in many of the most interesting appli-

cations of quantum computation and quantum infor-

mation. On the other hand, entanglement is a unique

measure of the quantum correlation of a pure state

in condensed matter physics and may bring new in-

sights.

The quantum entanglement in solid systems such

as spin chains[6—22] is an important emerging field.

Spin chains are natural candidates for the realiza-

tion of entanglement compared with other physics

systems. The Heisenberg spin system, which may

be a suitable candidate to simulate the relation be-

tween qubits in a quantum computer, is an exten-

sively studied solid-state system which is simple but

realistic. The computational results of the preceding

work show that the amount of pairwise entanglement

between two spins can be modified by varying the

strength of the temperature or the external magnetic

fields.

In this paper, we study the bipartite entanglement

in a two-qubit Heisenberg XXZ chain under an inho-

mogeneous magnetic field by applying the concept of

negativity. We will concentrate on the dependence

of entanglement on various parameters such as the

external magnetic field, the anisotropy parameter, as

well as the temperature.

2 General formalism

The Hamiltonian of the N-qubit anisotropic

Heisenberg XXZ model in an inhomogeneous mag-

netic field is[11]

H =
1

2

N
∑

i=1

[

Jσx
i σ

x
i+1 +Jσy

i σ
y
i+1 +Jzσ

z
i σ

z
i+1 +

(B+b)σz
i +(B−b)σz

i+1

]

, (1)

where J and Jz are the real coupling coefficients. The

coupling constants J >0 and Jz >0 correspond to the

anti-ferromagnetic case, and J <0 and Jz <0 to the

ferromagnetic case. B> 0 is restricted, and the mag-

netic fields acting on the two spins have been param-

eterized in such a way that b controls the degree of

inhomogeneity. We consider here the Hamiltonian for

the N=2 case.

Now, we briefly introduce the definition of the

Received 28 July 2008, Revised 12 September 2008

1)E-mail: qrainm@gmail.com
©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



250 Chinese Physics C (HEP & NP) Vol. 33

negativity[23] for a state ρ. A non-entangled state

has necessarily a positive partial transpose (PPT)[24]

according to the Peres-Horodecki criterion. In the

case of two spins of one half (1/2,1/2), and the case

of (1/2, 1) mixed spins, a PPT is sufficient. Negati-

vity was firstly introduced by Vidal and Werner and

is defined as

N(ρ) =
||ρT2 ||1−1

2
, (2)

where the norm of the trace ρT2 is equal to the

sum of the absolute values of the eigenvalues of ρT2 ,

and T2 denotes the partial transpose of ρ with re-

spect to the second subsystem. The state at ther-

mal equilibrium[25] is represented by Gibb’s den-

sity operator ρ(T ) = Z−1 exp(−H/kBT ), where Z =

tr[exp(−H/kBT )] is the partition function, kB is the

Boltzmann’s constant and is set to be 1 hereafter.

From the fact that the partial transpose does not

change the trace of a state and tr(ρ)=1, it is straight-

forward to check that the negativity is equivalent to

the absolute value of the sum of the negative eigen-

values of ρT2 . That is, the bipartite entanglement

between sites 1 and the others can be measured by

means of the negativity N1−n
[23]

N1−n =
∑

i
|(µ1−n)i|. (3)

3 Results and discussion

In the standard basis {|11〉, |10〉, |01〉, |00〉}, we

can get the eigenvalues and eigenstates of this system.

This is in accordance with Ref. [11].

E1 = (Jz/2−B), E2 = (Jz/2+B),

E3 = −Jz/2−ν, E4 =−Jz/2+ν,

|ψ1〉= |00〉, |ψ2〉= |11〉,

|ψ3〉=
1

√

1+χ2/J2

(

χ

J
|10〉+ |01〉

)

,

|ψ4〉=
1

√

1+µ2/J2

(

µ

J
|10〉+ |01〉

)

,

(4)

where ν =
√
b2 +J2, χ = b− ν, µ = b+ ν. And the

partial transposed density matrix of this system can

be written as

ρT1

12 =
1

Z
×
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




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0 0 eJz/2kT (α+β) 0

−ω 0 0 e−E1/kT



















,

(5)

where Z= e−E2/kT (1+e2B/kT )+2e(Jz+B)/kT cosh(ν/kT ),

α = cosh(ν/kT ), β = bsinh(ν/kT ) and ω =

eJz/2kTJ sinh(ν/kT ). It is very tedious to write the

eigenvalues of ρT1

12 and here we give some numerical

results and discuss them in detail.

Case 1: Jz=0. This model becomes a XX spin

chain. In Fig. 1; we give the results at different

temperatures for the nonuniform magnetic field

(Fig. 1(a), B=0) and the uniform magnetic field

(Fig. 1(b), b=0). It can be seen that with increas-

ing temperature the negativity strongly decreases due

to the mixing of the maximally entangled state with

other states. The maximum entanglement occurs of

course at T=0 (ground-state entanglement) with a

value of 0.5 in this case. The negativity always de-

creases with an increase of B and b. However, the

curve line will emerge at a stable value with the

Fig. 1. The negativity N1−2 versus b (left) and B (right) for different temperature (J=1).
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Fig. 2. The negativity N1−2 versus b (left) and B (right) for different Jz.

increase of the magnetic field. When T=1.3, the in-

homogeneity of the magnetic field will induce entan-

glement and the value will increase with the increase

of b. Obviously entanglement is reduced by higher

temperatures, however the inhomogeneity can induce

it. At the same time, we also note that the entan-

glement is symmetric with respect to a zero magnetic

field.

Case 2: Jz 6=0. We give here negativitiesN1−2 cal-

culated for different anisotropy parameters Jz versus

the inhomogeneous (J=1, T=0.5, B=1) and versus

the uniform magnetic field (J=1, T=0.5, b=1). N1−2

falls off gradually with the increasing value of B and

b. One observes that for higher values of Jz, the en-

tanglement of this system is stronger than in case 1.

It can also be seen that the bipartite entanglement de-

creases with the increasing value of B and approaches

zero at some B value (Fig. 2(b)). In Fig. 2 also the

combination occurs when Jz = 1. The model then cor-

responds to a XXX spin chain. From the two figures

we notice that different apects of the inhomogeneity

of the magnetic field seem to play a role.

4 Conclusions

In this paper, we have studied the properties of

the bipartite entanglement in the two-qubit Heisen-

berg XXZ chain under the influence of an inhomoge-

neous magnetic field. We obtained some numerical

results of this model by investigating the negativity.

Our results show that the negativity exists for both

the anti-ferromagnetic and the ferromagnetic case.

We found that the inhomogeneity of the magnetic

field will induce entanglement and the entanglement

is enhanced by increasing the anisotropy parameter

Jz.

References

1 Bennett C H, Brassard G, Crépeau C et al. Phys. Rev.
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