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Extraction of resonance parameters from
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Abstract We have developed an analytic continuation method for extracting parameters of nucleon resonances

within a Hamiltonian formulation of meson-nucleon reactions. The method was tested for simple solvable

models and then applied for our recent coupled channels model (πN, ηN, π∆, ρN, and σN ) of the πN and

γ
∗N reactions. The resonance pole positions and their properties are studied for P33 and P11 channels.
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1 Introduction

The study of excited nucleon states (N∗) has long

been recognized as an important step towards devel-

oping a fundamental understanding of strong inter-

actions. It is an important part of the effort to un-

derstand the structure of the nucleon since the dy-

namics governing the internal structure of composite

particles, such as nuclei and baryons, is closely re-

lated to the structure of their excited states. Within

the framework of Quantum Chromodynamics (QCD),

a clear understanding of the spectrum and decay

scheme of the N∗ states will reveal the role of con-

finement and chiral symmetry in the non-perturbative

region.

The N∗ states are unstable and couple strongly

with the meson-baryon continuum states to form nu-

cleon resonances in meson production reactions on

the nucleon. Therefore the extraction of nucleon res-

onance parameters from the reaction data is one of

the important tasks in hadron physics[1, 2]. Ideally,

the extraction of resonance parameter should involve

the following step. (1) Perform complete measure-

ment of all independent observables of the reactions

considered. (2) Extract the partial wave amplitudes

from the data. (3) Extract the resonance parameters

from the extracted partial wave amplitudes. For the

second step, we have developed a dynamical model for

describing the extensive and high-quality data of πN

and γ
∗N reactions within a Hamiltonian formulation

of multi-channels and multi-resonances reactions[3—9].

It includes πN, ηN and ππN channels, where the ππN

channel is taken into account through the unstable

particle channels (π∆, ρN, and σN ). In this report

we focus on the third step based on our recent work

Ref. [10].

It will be useful to briefly recall how the resonance

are defined[11—13]. By using analytic continuation, the

scattering amplitude can be defined on the complex

energy plane. The resonance is defined as a pole of

the T -matrix on the unphysical energy sheet. The

residue of the amplitude at the resonance pole gives

a form factor of the resonance, which is the important

information on the resonance structure. Comparing

with the single channel case, the analytic structure of

the amplitude becomes complex for the multi-channel
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case as our interest on πN scattering. We have de-

veloped an analytic continuation method in order to

extract resonance parameters from the scattering am-

plitude obtained from the dynamical coupled channel

model of the meson production reaction. Our model

of the meson production reaction is briefly summa-

rized in section 2. Then we discuss the method to

extract resonance pole from the amplitude in section

3. Here the main task is to handle the singularities

associated with the unstable particle channels such as

π∆, ρN, and σN, which couple with the three-body

ππN channel. The results from the application of the

method for P11 and P33 πN amplitudes are shown in

section 4. A brief summary is given in section 5.

2 Dynamical model for meson produc-

tion reaction

The starting point of the dynamical model[4] for

describing γN,πN → MB reactions is the following

Lippmann-Schwinger equation for the scattering T -

matrix

T (E) = V +V
1

E−H0 +iε
T (E) . (1)

The equation is coupled channel equation for the

N∗⊕MB⊕ππN model space. The interaction consists

of the two-body meson-baryon and meson-meson in-

teractions vnon−res, which are derived from the meson

exchange model and the decay vertex Γ of ρ,σ →ππ

and N∗ →M+B as

V = vnon-res +Γ +Γ †. (2)

The interaction V is independent on the scattering

energy and therefore the unitarity relation within the

restricted Fock-space is trivially satisfied.

We rewrite Eq. (1) into a more convenient form

for practical calculations. We achieve this rather com-

plex task by applying the standard projection oper-

ator techniques, similar to that employed in a study

of πNN scattering[14]. The details of our derivations

are given in Appendix B of Ref. [4]. The resulting

MB → M′B′ amplitude in each partial wave consists

of a non-resonant amplitude tnon−res(E) and a reso-

nant amplitude tres(E) as illustrated in Figs. 1 and 2.

It can be written as

T (E) = tnon-res(E)+ tres(E) . (3)

...

Fig. 1. Graphical representation of the non-

resonant amplitude

The non-resonant amplitude tnon-res is obtained by

solving the following coupled-channel integral equa-

tions

tnon-res(E) = vnon-res +

vnon-resGMB(E)tnon-res(E) . (4)

The meson-baryon propagator GMB in Eq. (4) takes

the following form

GMB(E) =
1

E−EB−EM−ΣMB(E)+iε
, (5)

where EB and EM are energies of baryon and meson

on the mass-shell. The mass shift ΣMB(E) depends

on the considered MB channel. It is ΣMB(E) = 0

for the stable particle channels (MB = πN,ηN). For

channels containing an unstable particle, such as

MB = π∆,ρN,σN, ΣMB is self-energy of the unsta-

ble particle with a spectator pion as illustrated in the

third diagram of Fig. 1 as

ΣMB(E) = 〈MB|Γ
1

E−Eπ−Eπ−EN +iε
Γ †|MB〉. (6)

...

Fig. 2. Graphical representation of the reso-

nant amplitude.

The resonant term T res is defined by

tres(E) =
∑

N∗

i
,N∗

j

Γ̄N∗

i
→M′B′(E)[D(E)]i,j Γ̄MB→N∗

j
(E) ,

(7)

with the N∗ Green’s function given as

[D(E)−1]i,j(E) = (E−M 0
N∗

i
)δi,j − Σ̄i,j(E) . (8)

M 0
N∗ is the mass of a bare N∗ state, and the self-

energies are

Σ̄i,j(E) =
∑

MB

Γ̄MB→N∗

i
(E)GMB(E)ΓN∗

j
→MB . (9)

In general, the bare states mix with each other

through the off-diagonal matrix elements of the self-

energies. The dressed vertex interactions in Eq. (7)

and Eq. (9) are

Γ̄MB→N∗(E) = ΓMB→N∗ +
∑

M′B′

ΓM′B′→N∗ ×

GM′B′(E)tnon-res(E). (10)

The scattering amplitudes are solved for real en-

ergy E for the observables of πN reactions, while in

order to investigate the resonance pole from the above

amplitude, one has to solve the above equations for

complex energy E and analytic continue the ampli-

tude on the unphysical sheet.
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3 Analytic continuation of the scatter-

ing amplitude

For resonance search, we solve the coupled chan-

nel equation Eq. (1) for complex energy. Therefore,

a numerical method for analytic continuation of the

amplitudes has to be developed. A key for selecting

the amplitude on physical sheet or unphysical sheet is

how to include the singularities of the meson-baryon

Green functions GMB. The meson-baryon Green func-

tion appears in the Lippmann-Schwinger equation for

the non-resonant T -matrix

tnon-res(p′,p;E) = v(p′,p)+∫
C

dq q2v(p′, q)GMB(E,q)tnon-res(q,p;E), (11)

and the self-energy of N∗

Σ̄i,j(E) =
∑

MB

∫
C

dqq2Γ̄MB→N∗

i
(E,q)×

GMB(E,q)ΓN∗

j
→MB(q) . (12)

The choice of the integration path C will be discussed

later in this section.

For multi-channel case, the unphysical sheets can

be specified by physical or unphysical sheets for each

meson-baryon channels, where at least one of the

channels should be on the unphysical sheet. In gen-

eral there can be many poles associated with single

resonance and the pole which is nearest to the physi-

cal sheet is supposed to play a dominant role. In our

numerical study, we search for the poles close to the

physical sheet.

3.1 Channel with stable particles

For channel with stable particles, the meson-

baryon Green function is given as

GMB(E,q) =
1

E−EM(q)−EB(q)
. (13)

The Green function has a pole at q = p0 given as

E =
√

m2
M +p2

0 +
√

m2
B +p2

0. (14)

The physical scattering amplitude at a positive

energy E can be obtained from Eq. (11) by setting

E →E+iε with a positive ε→ 0 and choosing the in-

tegration contour C to be along the real-axis of p with

0 6 p 6 ∞. From Eq. (11) it is clear that tnon-res(E)

has a discontinuity on the positive real E

Dis(t(E)) = t(E +iε)− t(E− iε) =

2πiρ(p0)v(p0,p0)t(E) , (15)

where ρ(p0) = p0E1(p0)E2(p0)/E. Thus the t-matrix

has a cut running along the real positive E.

The resonance poles can be found from T (E) on

the unphysical Riemann sheet. To find resonance

poles with the energy above MB-threshold, we need

to find a solution of Eq. (11) on the unphysical sheet.

The pole p0 of the propagator is on the lower p-plane,

as shown in Fig. 3(a). It is well-known[15—18] the an-

alytic continuation of the solution on the unphysical

sheet is achieved by deforming the integration path

as contour C′
1 shown in Fig. 3(a). By this the pole

will not cross the cut and the integral is analytically

continued from real positive E to the lower half of

the unphysical E-sheet with Im(p0) 6 0. Obviously,

the same solution can be obtained by choosing any

contour which is below the pole position p0, such as

the contour C1 in Fig. 3(b).

Im p

Re p

(a) (b)

0 0
C’

C

1

1

Fig. 3. The shift of the singularity (open circle) of the propagator of the two-particle scattering equation as

energy E moves from real value to negative imaginary. C′
1 in (a) or C1 in (b) is the integration path for

calculating the scattering amplitude with E on the unphysical plane.
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It is noticed that we have assumed the potential

v(p′,p) is analytic in the region we have deformed the

path.

3.2 Channel including unstable particle

For meson-baryon reactions, the nucleon reso-

nances can decay into some unstable particle chan-

nels such as the π∆, ρN, σN considered in the model

of Ref. [4]. Here we discuss an analytic continuation

method to find resonance poles for such a reaction

model.

Here we examine π∆ channel as an example. The

meson baryon Green function GMB is given as

Gπ∆(E,p) =
1

E−Eπ(p)−E∆(p)−Σ∆(E,p)
, (16)

where

Σ∆(p,E) =

∫
C3

{g∆,πN(q)}2q2dq

E−Eπ(p)− [(Eπ(q)+EN(q))2 +p2]1/2
.

(17)

At first we examine the analytic structure of Gπ∆.

The π∆ Green function has singularities associated

with the ππN and the “π∆ continuum” in complex

E plane as indicated by dashed lines in Fig. 4.

Im E

Re EππN

π∆

A

Fig. 4. Singularity of the π∆ Green function.

The analytic continuation of the scattering am-

plitude for π∆ channel can be done by choosing the

appropriate contour C of Eqs. (11) and (12). For

given real E, the discontinuity of the π∆ propaga-

tor is the ππN cut along the real axis between ±p0

(−p0 6 p 6 p0) which is obtained by solving

E = Eπ(p0)+[(mπ +mN)2 +p2
0]

1/2. (18)

There is also a singularity at momentum p = px, which

satisfies

E−Eπ(px)−E∆(px)−Σ∆(px,E) = 0. (19)

Physically, this singularity corresponds to the π∆

two-body scattering state.

As an example, for finding the resonance pole with

Re(E) > mπ + m∆ and Im(E) < Im(M∆) shown as

point A in Fig. 4, the integration contour of momen-

tum p must be chosen to stay below the ππN cut

(dashed line) and the singularity px, such as the con-

tour C2 shown in Fig. 5. It is noticed further that the

singularity position q0 of the propagator in Eq. (17)

depends on spectator momentum p

E−Eπ(p) = [(Eπ(q0)+EN(q0))
2 +p2]1/2 . (20)

Therefore the singularity q0 moves when the momen-

tum p varies along the path C2 of Fig. 5. The in-

tegration contour C3 of Eq. (17) controls physical or

unphysical sheet of ππN channel.

Im p

Re p0

C2

p0

px

Fig. 5. Contour C2 for calculating the π∆ self-

energy on the unphysical sheet.

3.3 Toy model

To illustrate how the procedure of the analytic

continuation in the previous sections works, we ex-

amined a simple toy model. The model consists of

N∗, π∆ and ππN Fock space. The N∗ couple with

π∆ channel and the π∆ state decays into into ππN.

The resonance pole is given by solving

MN∗ = m0 +Σπ∆(M∗
N) (21)

with

Σπ∆ =

∫
dpp2[gN∗

π∆(p)]2Gπ∆(W,p). (22)

The π∆ Green’s function is given in Eq. (16). Eq. (21)

corresponds to a condition for a pole of T Res (Eq. (7)),

which is equivalent to finding a pole of N∗ Green

function (Eq. (8)). In this simple model, the non-

resonant interactions and the coupling of N∗ with MB

channels other than π∆ channel are turned off. We

take a non-relativistic kinetic energies of mesons and

baryons, the s-wave interaction with mono pole ver-

tex form factors. This model enables us to obtain

semi-analytic results, which can be used to test the

contour deformation method for analytic continua-

tion.

We have studied the resonance pole by increas-

ing the strength of N∗ → π∆ coupling constant. For

vanishing coupling constant the resonance pole is at
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MN∗ = m0 as shown in Fig. 6. Increasing gN∗
π∆, the

trajectory of the resonance pole is shown in Fig. 6.

The pole moves below π∆ cut on the π∆ unphysi-

cal sheet. Further increasing the gN∗
π∆, the width

of the resonance becomes smaller because of the de-

creasing the available phase space for N∗ decay. The

width remains finite when Re(M ∗
N) moves below the

π∆ threshold, since the width of the resonance is due

to the decay of N∗ into ππN. Finally the resonance

becomes a bound state of ππN system. In all case

the pole positions of the contour deformation method

agree with those of the semi-analytic calculation.

-100

-80

-60

-40
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 0

 1200  1400  1600  1800

Im
(M

)

Re(M)

resonance pole

m0

ππΝ

π∆

Fig. 6. Trajectory of the resonance pole.

4 Resonance poles of P11 and P33

We apply the method of analytic continuation to

our dynamical coupled-channel model developed in

Ref. [5]. The model gives a good description of the πN

elastic scattering, pion photoproduction[8], (π,ππ)[6]

and single pion electroproduction reactions[9].

Here we show the results on P33 and P11 reso-

nances. In both channels, the non-resonant T -matrix

T non-res does not have a pole and the resonance poles

are on the resonant amplitude T res. We list the poles

near to the physical sheet.

The resonance amplitude is parametrized as

T =
Reiθ

E−Mres

. (23)

Our results on the resonance pole and residue for P33

channel is listed in Table 1. Our results agree well

with those of the other studies.

Table 1. Parameters of P33 resonance.

analysis M∆/MeV residue (R/MeV, θ◦)

this work (1211,−50) (52, −46)

GWU/VPI[19] (1211, −50) (52, −47)

Jülich Model[20] (1218, −45) (47, −37)

Höhler[21] (1209, −50) (50, −48)

Cutkosky[22] (1210, −50) (53, −47)

For P11 channel, we focus on the three poles we

found in the model. We found poles at MN∗ =

1820− 248i(A), 1357− 76i(B), 1364− 105i(C). The

almost degenerate two poles around π∆ threshold are

also found in recent works from Jülich and GWU/VPI

as shown in Table 2. We can examine how those reso-

nances develop from the ‘bare’ N∗ though the coupled

channel dynamics. For this purpose, we artificially

modified the Green function in Eq. (8) by introduc-

ing a scale factor y for the N∗ self energy as

[D(E)−1]ij(E) = (E−M 0
N∗

j
)δij −yΣ̄ij(E). (24)

By increasing y from zero, we can examine the evo-

lution of the resonance poles as shown in Fig. 7. The

dotted curve shows how ‘bare’ resonance moves to res-

onance pole A. The resonance A is above the thresh-

old energy of ηN and π∆ and it is on the unphysi-

cal sheet of both channels. The dashed curve shows

how the same “bare” state evolves on the ηN physical

sheet. Here we have switched off the coupling of N∗

with π∆ channel for the dashed line. The real part of

the pole reaches around 1400 MeV below ηN thresh-

old. We then turn on the coupling with π∆ channel

and the resonance split into resonance B(C) on the

π∆ unphysical (physical) sheet. Within the dynam-

ical model, it is shown the three resonance poles are

evolved from the same bare state. This finding indi-

cates there is a possibility that poles of the resonances

may not belongs to the different core states such as

predicted from constituent quark model but one core

state can evolve dynamically into several poles.

Table 2. P11 resonance poles near the Roper

resonance position of PDG.

analysis P11 poles/MeV

this work (1357, −76) (1364, −105)

GWU/VPI[19] (1359, −82) (1388, −83)

Jülich Model[20] (1387, −74) (1387, −71)

-200

-100
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Fig. 7. Trajectory of P11 resonance pole.
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5 Summary

We have developed a method of analytic continu-

ation of the scattering amplitude within the dynam-

ical coupled channel reaction model. The resonance

information can be extracted from the amplitude on

the unphysical energy plane using the method. As

an example, we have shown the poles of the P11 and

P33 amplitudes using the realistic model of the pion-

nucleon scattering. We found three pole of P11 chan-

nel are associated to the single bare resonance state.

Extension of the method to extract electromagnetic

resonance form factor is in progress.
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