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Abstract In this talk I report on recent work related to the dynamical generation of baryonic resonances,

some made up from pseudoscalar meson-baryon, others from vector meson-baryon and a third type from two

meson-one baryon systems. We can establish a correspondence with known baryonic resonances, reinforcing

conclusions previously drawn and bringing new light on the nature of some baryonic resonances of higher mass.
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1 Introduction

The topic of dynamically generated resonances is

bringing new light into the interpretation of many

mesonic and baryonic resonances[1, 2]. Considering

the case of the baryons, the underlying physics can

be depicted in a schematic picture. It is well known

that quarks can not be directly seen because when

we give energy to the nucleon to break it, the excita-

tion energy goes into creating meson pairs, mostly

pions. This could equally happen even if we just

want to excite the nucleon, not to break it. Indeed,

the two first excitations of the nucleon correspond to

the Roper, N∗(1440) and the N∗(1535). This means

500—600 MeV energy excess over the nucleon mass,

which in the quark model would correspond to the ex-

citation energy of one quark. However, the creation

of one or two pions costs less energy than this. So,

why should not many baryon resonances correspond

to bound states or resonant states of a meson and a

ground state of the baryons, or even two mesons and

one baryon? The possibility that this occurs depends

on whether the dynamics of the meson baryon inter-

action provides enough attraction to stabilize the sys-

tem. Fortunately there is an excellent theory to study

these interactions at low energies which is based on

effective chiral Lagrangians that implement the chiral

symmetry of the underlying QCD[3, 4]. In the present

case we shall also report on recent results for the in-

teraction of vector mesons with baryons, which re-

quire new Lagrangians. Here again one is lucky that

such information is available in a scheme which is

an extension of the chiral Lagrangians to incorporate

vector mesons. The formulation starts by demand-

ing invariance of these latter Lagrangians under local

gauge transformations, that require the introduction
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of vector mesons which obtain their mass through the

mechanism of spontaneous symmetry breaking. This

scheme is known as the hidden gauge formalism which

we shall use here too[5—8].

The novel topics that I will report about are devel-

opments on learning about the nature of resonances,

which has been recently described in Ref. [9], the re-

cent work showing extra evidence for the existence of

two Λ(1405) states[11], the generation of resonances

from two mesons and a baryon[12, 13], particularly one

around 1920 MeV[14—16] that could have been ob-

served experimentally, and finally the novel work on

the generation of resonances from the interaction of

vector mesons with baryons, either from the octet[17]

or the decuplet[18] of ground state baryons.

2 Searching for the nature of reso-

nances

In this section I will report upon the work of

Ref. [9]. In this work one considers the scattering

of a pseudoscalar meson with mass m from a tar-

get baryon with mass MT. The s-channel two-body

unitarity condition for the amplitude T (
√

s) can be

expressed as

ImT−1(
√

s) =
ρ(
√

s)

2
, (1)

where ρ(
√

s) = 2MTq̄/(4π
√

s) is the two-body

phase space of the scattering system with q̄ =
√

[s−(MT−m)2][s−(MT +m)2]/(2
√

s). This is the

so-called elastic unitarity. Based on the N/D

method[19, 20], the general form of the scattering am-

plitude satisfying Eq. (1) is given by

T (
√

s) =
1

V −1(
√

s)−G(
√

s)
, (2)

where V (
√

s) is a real function expressing the dynam-

ical contributions other than the s-channel unitarity

and will be identified as the kernel interaction. G(
√

s)

is obtained by the once subtracted dispersion relation

with the phase-space function ρ(
√

s). An analytical

expression for this G(
√

s) function can be found in[20]

which shows explicitly the subtraction constant a(µ)

of the dispersion relation:

G(
√

s) =
2MT

(4π)2

{

a(µ)+ln
M 2

T

µ2
+

m2−M 2
T +s

2s
ln

m2

M 2
T

+

q̄√
s
[ln(s−(M 2

T−m2)+2
√

sq̄)+

ln(s+(M 2
T−m2)+2

√
sq̄)−

ln(−s+(M 2
T−m2)+2

√
sq̄)−

ln(−s−(M 2
T−m2)+2

√
sq̄)]

}

. (3)

One usually assumes V to be given by the

Weinberg-Tomozawa interaction and then one has

T (
√

s) =
1

V −1
WT(

√
s)−G(

√
s;apheno)

, (4)

with the subtraction constant apheno in the loop func-

tion G being a free parameter to reproduce experi-

mental data. This scheme can describe various phe-

nomena well, but the subtraction constant does not

always satisfy the natural renormalization condition

of Ref. [20], which corresponds to having an equiva-

lent G function using a cut off of the order of 700—

1000 MeV, the scale of the effective theory.

One can achieve an equivalent scattering ampli-

tude, using a different interaction kernel Vnatural as

T (
√

s) =
1

V −1
natural(

√
s)−G(

√
s;anatural)

. (5)

The interaction kernel Vnatural should be modified

from VWT in order to reproduce experimental observ-

ables. Thus, equating the denominators of Eqs. (4)

and (5) one obtains[9]:

Vnatural(
√

s) =− C

2f 2
(
√

s−MT)+
C

2f 2

(
√

s−MT)2√
s−Meff

.

(6)

In Eq. (6) the first term represents the Weinberg-

Tomozawa interaction, the seed to generate dynami-

cally the resonances, and the second term would rep-

resent the contribution to account for a genuine part

of the wave function. The findings of Ref. [9] indicate

that, while the Λ(1405) is essentially a pure dynam-

ically generated state, the N∗(1535) demands also a

genuine component, probably a three quark compo-

nent.

A very recent work in which a pole to account for a

possible genuine component of the N∗(1535) is consid-

ered together with the driving Weinberg-Tomozawa

term, reinforces the leading role of the dynamically

generated N∗(1535) component, once another pole to

account for a genuine N∗(1650) (non pseudoscalar-

baryon state for this purpose) is considered[21].

3 The K−d → nΛ(1405) reaction and

further evidence for the existence of

two Λ(1405) states

In the chiral SU(3) framework for meson-baryon

interaction one has the interaction of one octet of

mesons with the octet of baryons, which leads to a

singlet, a symmetric octet and an antisymmetric octet

in which the interaction is attractive, while it is re-

pulsive in the other multiplets[22]. This leads to two



1134 Chinese Physics C (HEP & NP) Vol. 33

octets and a singlet of dynamically generated states

and the two octets are degenerate in the SU(3) limit

when the masses of the mesons are made equal as well

as those of the baryons. As the physical masses are

gradually restored, the two octets split apart and one

of them approaches the pole of the singlet at energies

around 1400 MeV, such that they overlap and the

physical Λ(1405) is a superposition of the two reso-

nances. Yet, there are some differences between the

two states: the one at 1395 MeV is wide and couples

strongly to πΣ, while that at 1420 MeV is narrow

(around 30 MeV) and couples mostly to K̄N. These

findings have been corroborated by all following chiral

dynamical works on this issue[23—29]. Because of the

different shape of the two states and the different cou-

pling to K̄N or πΣ, one expects that the Λ(1405) will

show up with different positions and widths in differ-

ent experiments, depending on whether it is produced

by an initial K̄N or πΣ state. The first evidence for

this was seen in the K−p → π0π0Σ0 experiment[30]

where a narrow peak was found around 1420 MeV.

The reaction was studied theoretically in[31], where

it was shown that the resonance was indeed excited

from the K̄N channel and this was responsible for the

experimental shape as predicted in Ref. [22].

A further evidence for it has come from the anal-

ysis of the experiment of Ref. [32] done recently in

Ref. [11]. The reaction is K−d → nΛ(1405), but the

peak of the resonance is seen clearly at 1420 MeV.

It is curious to see how the Λ(1405) can be made

in a K−p reaction when the resonance is below the

K−p threshold. The answer is found in[11], where the

reaction was studied taking into account single and

double scattering of the K−, as depicted in Fig. 1.

K− p n

π Σ n

T2

K−

p n K−

π Σ n

T2 T1

K̄0

n p K−

π Σ n

T2 T1

Dia. 1 Dia. 2 Dia. 3

Fig. 1. Diagrams for the calculation of the

K−d → πΣn reaction. T1 and T2 denote

the scattering amplitudes for K̄N → K̄N and

K̄N→πΣ, respectively.

The reaction proceeds basically by double scattering:

in a first scattering there is a collision of the K− which

gives energy to a neutron and brings the K− below

threshold to produce the Λ(1405) in the second colli-

sion. The calculated cross section of Ref. [11] agrees

well with experiment in shape and size, leaving apart

a bump around 1385 MeV that in Ref. [11] is found to

come from Σ(1385) excitation (Fig. 2), the inclusion

of which does not distort the shape of the Λ(1405).

Experiments in this line are planned for J-PARC.
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Fig. 2. πΣ invariant mass spectra of K−d →

π+Σ−n in arbitrary units at 800 MeV/c inci-

dent K− momentum. The solid line denotes

the present calculation. The data are taken

from the bubble chamber experiment at K−

momenta between 686 and 844 MeV/c, see

text.

4 States of two mesons and a baryon

There are two specific talks on this issue in the

Workshop[33, 34]. I will summarize a bit the impor-

tant findings in this area by different groups. In

Refs. [12, 13] a formalism was develop to study Fad-

deev equations of systems of two mesons and a sta-

ble baryon. The interaction of the pairs was ob-

tained from the chiral unitary approach, which proves

quite successful to give the scattering amplitudes of

meson-meson and meson-baryon systems in the re-

gion of energies of interest to us. The spectacular

finding is that, leaving apart the Roper resonance,

whose structure is far more elaborate than originally

thought[35, 36], all the low lying JP = 1/2+ excited

states are obtained as bound states or resonances of

two mesons and one baryon in coupled channels.

It is rewarding to see that the idea is catching up

and an independent study, using variational meth-

ods found a bound state of KK̄N, with the KK̄ being

in the a0(980) state[14]. The system was studied a

posteriori in[16] and it was found to appear at the

same energy and the same configuration, although

with a mixture of f0(980)N, see Fig. 3. This state ap-

pears around 1920 MeV with JP =1/2+. In a recent

paper[37] some arguments were given to associate this

state with the bump that one sees in the γp→K+Λ

reaction around this energy, which is clearly visible in
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recent accurate experiments[38, 39]. If this association

was correct there would be other experimental conse-

quences, as an enhanced strength of the γp→K+K−p

cross section close to threshold, as well as a shift of

strength close to the KK̄ threshold in the invariant

mass distribution of the kaon pair. This experiment

is right now under study and preliminary results cor-

roborate our predictions[40].

Fig. 3. A possible N∗(1910) in the NKK̄ channels.

5 Resonances from the interaction of

vector mesons with baryons

This is a very novel development since, as we shall

see, some of the high mass baryon resonances can be

represented like bound states of vector mesons and

baryons, either from the octet of stable baryons or

the decuplet.

5.1 Formalism

We follow the formalism of the hidden gauge inter-

action for vector mesons of[5—8] (see also Ref. [41] for

a practical set of Feynman rules). The Lagrangian

involving the interaction of vector mesons amongst

themselves is given by

LIII =−1

4
〈VµνV µν〉 , (7)

where the symbol 〈〉 stands for the trace in the SU(3)

space and Vµν is given by

Vµν = ∂µ Vν −∂ν Vµ− ig[Vµ,Vν ] , (8)

where g is

g =
MV

2f
, (9)

with f = 93 MeV the pion decay constant. The mag-

nitude Vµ is the SU(3) matrix of the vectors of the

octet of the ρ

Vµ =















ρ0

√
2

+
ω√
2

ρ+ K∗+

ρ− − ρ0

√
2

+
ω√
2

K∗0

K∗− K̄∗0 φ















µ

. (10)

The lagrangian LIII gives rise to a contact term

coming from [Vµ,Vν ][Vµ,Vν ]

L(c)
III =

g2

2
〈VµVνV µV ν −VνVµV µV ν〉 , (11)

as well as to a three vector vertex which can be con-

veniently rewritten as

L(3V)
III = ig〈(V µ ∂ν Vµ−∂ν VµV µ)V ν〉 . (12)

In this case one finds an analogy to the coupling of

vectors to pseudoscalars given in the same theory by

LVPP =−ig〈[P,∂ν P ]V ν〉 , (13)

where P is the SU(3) matrix of the pseudoscalar

fields.

In a similar way, one obtains the Lagrangian for

the coupling of vector mesons to the baryon octet

given by[42, 43] ;1)

LBBV = g
(

〈B̄γµ[V µ,B]〉+〈B̄γµB〉〈V µ〉
)

(14)

where B is now the SU(3) matrix of the baryon octet

B =

















1√
2
Σ0 +

1√
6
Λ Σ+ p

Σ− − 1√
2
Σ0 +

1√
6
Λ n

Ξ− Ξ0 − 2√
6
Λ

















.

(15)

With these ingredients we can construct the Feyn-

man diagrams that lead to the PB→PB and VB→
VB interaction, by exchanging a vector meson be-

tween the pseudoscalar or the vector meson and the

baryon, as depicted in Fig. 4.

Fig. 4. Diagrams contributing to the pseudos-

calar-baryon (a) or vector- baryon (b) interac-

tion via the exchange of a vector meson.

1) Correcting a misprint in Ref. [42]
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From the diagram of Fig. 4(a), and under the

low energy approximation of neglecting q2/M 2
V in

the propagator of the exchanged vector, where q is

the momentum transfer, one obtains the same ampli-

tudes as obtained from the ordinary chiral Lagrangian

for pseudoscalar-baryon octet interaction[3, 4], namely

the Weinberg-Tomozawa terms. The approximation

of neglecting the three momenta of the vectors implies

that V ν in Eq. (12) corresponds to the exchanged vec-

tor and the analogy with Eq. (13) is more apparent.

Note that εµεµ becomes −~ε~ε ′ and the signs of the

Lagrangians also agree.

A small amendment is in order in the case of vec-

tor mesons, which is due to the mixing of ω8 and the

singlet of SU(3), ω1, to give the physical states of the

ω and the φ mesons:

ω =

√

2

3
ω1 +

1√
3
ω8 , φ =

1√
3
ω1−

√

2

3
ω8 . (16)

Given the structure of Eq. (16), the singlet

state which is accounted for by the V matrix,

diag(ω1,ω1,ω1)/
√

3, does not provide any contribu-

tion to Eq. (12), in which case all one must do is

to take the matrix elements known for the PB in-

teraction and, wherever P corresponds to the η8, the

amplitude should be multiplied by the factor 1/
√

3 to

get the corresponding ω contribution, and by −
√

2/3

to get the corresponding φ contribution. Upon the

approximation consistent with neglecting the three

momentum versus the mass of the particles (in this

case the baryon), we can just take the γ0 component

of Eq. (14) and then the transition potential corre-

sponding to the diagram of 4(b) is given by

Vij =−Cij

1

4f 2
(k0 +k′0) ~ε~ε ′ , (17)

where k0,k′0 are the energies of the incoming and

outgoing vector meson.

The Cij coefficients of Eq. (17) can be obtained

directly from[44—46] with the simple rules given above

for the ω and the φ mesons, and substituting π

by ρ and K by K∗ in the matrix elements. They

can be found in the appendix of[17] where one can

see that the cases with (I,S) = (3/2,0), (2,−1) and

(3/2,−2), the last two corresponding to exotic chan-

nels, have a repulsive interaction and do not produce

poles in the scattering matrices. However, the sectors

(I,S) = (1/2,0), (0,−1), (1,−1) and (1/2,−2) are at-

tractive and one finds bound states and resonances in

these cases.

The scattering matrix is obtained solving the cou-

pled channels Bethe Salpeter equation in the on shell

factorization approach of[20, 44]

T = [1−V G]−1 V, (18)

with G being the loop function of a vector meson and

a baryon of Eq. (3). This function is convoluted with

the spectral function of the vector mesons to take into

account their width as done in Ref. [47].

In this case the factor ~ε~ε ′, appearing in the po-

tential V , factorizes also in the T matrix for the ex-

ternal vector mesons. This trivial spin structure is

responsible for having degenerate states with spin-

parity 1/2−,3/2− for the interaction of vectors with

the octet of baryons and 1/2−,3/2−,5/2− for the in-

teraction of vectors with the decuplet of baryons.

What we have done here for the interaction of

vectors with the octet of baryons can be done for the

interaction of vectors with the decuplet of baryons,

and the interaction is obtained directly from that of

the pseudoscalar-decuplet of baryons studied in[48, 49].

The study of this interaction in[18, 50] leads also to the

generation of many resonances which are described

below.

We search for poles in the scattering matrices in

the second Riemann sheet, as defined in previous

works[51], basically changing q̄l by to −q̄l in the an-

alytical formula of the G function, Eq. (3), for chan-

nels where Re(
√

s) is above the threshold of the cor-

responding channel. From the residues of the ampli-

tudes at the poles one obtains the couplings of the

resonances to the different channels. Alternatively,

one can obtain these couplings from the amplitudes

in the real axis as follows. Assuming these amplitudes

to behave as

Tij =
gigj√

s−MR+iΓ/2
, (19)

where MR is the position of the maximum of | Tii |,
with i being the channel to which the resonance cou-

ples more strongly, and Γ its width at half-maximum,

one then finds

| gi |2=
Γ

2

√

|Tii|2 . (20)

Up to a global phase, this expression allows one to

determine the value of gi, which we take to be real.

The other couplings are then derived from

gj = gi

Tij(
√

s= MR)

Tii(
√

s = MR)
. (21)

This procedure to obtain the couplings from |T |2
in the real axis was used in Ref. [52] where it

was found that changes in the input parameters

which lead to moderate changes in the position and

the width of the states affected the couplings more

smoothly.
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Table 1. The properties of the 9 dynamically generated resonances and their possible PDG counterparts.

I, S theory PDG data

pole position real axis name JP status mass width

mass width

1/2,0 — 1696 92 N(1650) 1/2− ???? 1645-1670 145-185

N(1700) 3/2− ??? 1650-1750 50-150

1977+i53 1972 64 N(2080) 3/2− ?? ≈ 2080 180-450

N(2090) 1/2− ? ≈ 2090 100-400

0,−1 1784+i4 1783 9 Λ(1690) 3/2− ???? 1685-1695 50-70

Λ(1800) 1/2− ??? 1720-1850 200-400

1907+i70 1900 54 Λ(2000) ?? ? ≈ 2000 73-240

2158+i13 2158 23

1,−1 — 1830 42 Σ(1750) 1/2− ??? 1730-1800 60-160

— 1987 240 Σ(1940) 3/2− ??? 1900-1950 150-300

Σ(2000) 1/2− ? ≈ 2000 100-450

1/2,−2 2039+i67 2039 64 Ξ(1950) ?? ??? 1950±15 60±20

2083+i31 2077 29 Ξ(2120) ?? ? ≈ 2120 25

Table 2. The properties of the 10 dynamically generated resonances and their possible PDG counterparts.

We also include the N∗ bump around 2270 MeV and the ∆∗ bump around 2200 MeV.

S, I theory PDG data

pole position real axis name JP status mass width

mass width

0,1/2 1850+i5 1850 11 N(2090) 1/2− ? 1880-2180 95-414

N(2080) 3/2− ?? 1804-2081 180-450

2270(bump) N(2200) 5/2− ?? 1900-2228 130-400

0,3/2 1972+i49 1971 52 ∆(1900) 1/2− ?? 1850-1950 140-240

∆(1940) 3/2− ? 1940-2057 198-460

∆(1930) 5/2− ??? 1900-2020 220-500

2200(bump) ∆(2150) 1/2− ? 2050-2200 120-200

−1,0 2052+i10 2050 19 Λ(2000) ?? ? 1935-2030 73-180

−1,1 1987+i1 1985 10 Σ(1940) 3/2− ??? 1900-1950 150-300

2145+i58 2144 57 Σ(2000) 1/2− ? 1944-2004 116-413

2383+i73 2370 99 Σ(2250) ?? ??? 2210-2280 60-150

Σ(2455) ?? ?? 2455±10 100-140

−2,1/2 2214+i4 2215 9 Ξ(2250) ?? ?? 2189-2295 30-130

2305+i66 2308 66 Ξ(2370) ?? ?? 2356-2392 75-80

2522+i38 2512 60 Ξ(2500) ?? ? 2430-2505 59-150

−3,0 2449+i7 2445 13 Ω(2470) ?? ?? 2474±12 72±33

5.2 Results

In Table 1 we show a summary of the results ob-

tained from the interaction of vectors with the octet

of baryons and the tentative association to known

states[53].

For the (I,S) = (1/2,0) N∗ states there is the

N∗(1700) with JP = 3/2−, which could correspond

to the state we find with the same quantum num-

bers around the same energy. We also find in the

PDG the N∗(1650), which could be the near degen-

erate spin parter of the N∗(1700) that we predict in

the theory. It is interesting to recall that in the study

of Ref. [54] a pole is found around 1700 MeV, with

the largest coupling to ρN states. Around 2000 MeV,

where we find another N∗ resonance, there are the

states N∗(2080) and N∗(2090), with JP = 3/2− and

JP = 1/2− respectively, showing a good approximate

spin degeneracy.

For the case (I,S) = (0,−1) there is in the PDG

one state, the Λ(1800) with JP = 1/2−, remarkably

close to the energy were we find a Λ state. The state

obtained around 1900 MeV could correspond to the

Λ(2000) cataloged in the PDG with unknown spin

and parity.
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The case of the Σ states having (I,S) = (1,−1)

is rather interesting. The state that we find around

1830 MeV, could be associated to the Σ(1750) with

JP = 1/2−. More interesting seems to be the case of

the state obtained around 1990 MeV that could be

related to two PDG candidates, again nearly degen-

erate, the Σ(1940) and the Σ(2000), with spin and

parity JP = 3/2− and JP = 1/2− respectively.

Finally, for the case of the cascade resonances,

(I,S) = (1/2,−2), we find two states, one around

2040 MeV and the other one around 2080 MeV. There

are two cascade states in the PDG around this en-

ergy region with spin parity unknown, the Ξ(1950)

and the Ξ(2120). Although the experimental knowl-

edge of this sector is relatively poor, a program is

presently running at Jefferson Lab to improve on this

situation[55].

The case of the vector interaction with the decu-

plet is similar and we show the results in Table 2.

We also can see that in many cases the experi-

ment shows the near degeneracy predicted by the the-

ory. Particularly, the case of the three ∆ resonances

around 1920 MeV is very interesting. One observes a

near degeneracy in the three spins 1/2−,3/2−,5/2−,

as the theory predicts. It is also very instructive to

recall that the case of the ∆(5/2−) is highly problem-

atic in quark models since it has a 3 hω excitation

and comes out always with a very high mass[50, 56].

The association of states found to some reported

in the PDG for the case of Λ, Σ and Ξ states looks

also equally appealing as one can see from the table.

In summary, the study of the interaction of

mesons in the vector octet of the ρ with baryons of the

octet of the proton and the decuplet of the ∆ within

the hidden gauge formalism of vector mesons, using a

unitary framework in coupled channels, has lead to a

rich structure of excited baryons. Many of the states

predicted by the theory can be associated to known

states in the PDG, thus providing a very different ex-

planation for the nature of these states than the one

given by quark models as simple 3q states. One of the

particular predictions of the theory is that, within the

approximations done, one obtains degenerate pairs of

particles in JP = 1/2−,3/2− for the case of the inter-

action of vectors with the baryons of the octet and

degenerate trios JP = 1/2−,3/2−,5/2− for the case

of the interaction of vectors with the baryons of the

decuplet. This behavior seems well reproduced by

many of the existing data, but in some cases the spin

partners do not show up in the PDG. The reasonable

results reported here produced by the hidden gauge

approach should give a stimulus to search experimen-

tally for the missing spin partners of the already ob-

served states, as well as possible new ones.
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