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Abstract The nuclear shadowing and antishadowing effects are explained by a unitarized BFKL equation.

The Q2- and x-variations of the nuclear parton distributions are detailed based on the level of the unintegrated

gluon distribution. In particular, the asymptotical behavior of the unintegrated gluon distribution near the

saturation limit in nuclear targets is studied. Our results in the nuclear targets are insensitive to the input

distributions if the parameters are fixed by the data of a free proton.
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1 Introduction

The gluon distribution in the nuclear target is an

essential ingredient in the calculation of high energy

nuclear collisions, which relate to minijet production,

dilepton production, heavy quarks and their bound

states. Although the gluon density in a free nucleon

was extracted by the experiments, however there are

not enough data for the gluon distributions in nu-

clei. As well known the parton densities in a bound

nucleon differ from in a free nucleon, the ratio of nu-

clear and deuterium structure functions is smaller or

lager than unity at Bjorken variable x < 0.05−0.1 or

x ≈ 0.1−0.2. These two facts are called the nuclear

shadowing and antishadowing effects, respectively[1].

The understanding of nuclear shadowing and anti-

shadowing in QCD is therefore an important issue to

predict the nuclear gluon distributions. In this as-

pect, the parton recombination (fusion) between two

different nucleons in a nucleus is a natural mecha-

nism, which transfers the partons from a smaller x

region to a larger x region and forms the nuclear shad-

owing and antishadowing effects[2].

The shadowing and antishadowing phenomena are

also predicted to happen in a free nucleon: a rapid rise

of parton multiplicities inside the proton at small x

leads to the gluon recombination, which changes the

distributions of gluon- and quark-densities, but does

not change their total momenta. In consequence, a

part of the gluon momentum lost in the shadowing

should be compensated in terms of new gluons with

larger x, which form the antishadowing. The modi-

fication of the gluon recombination to the standard

DGLAP[3] evolution equation was first proposed by

Gribov-Levin-Ryskin and Mueller-Qiu (the GLR-MQ

equation) in Ref. [4], and it is naturally regarded as

the QCD dynamics of the nuclear shadowing since the

type of gluon fusion in a nucleon is still there in a nu-

cleus but roughly differs by an A1/3 scale[5]. However,

the GLR-MQ equation does not predict the nuclear

antishadowing effect since the momentum conserva-

tion in the gluon recombination is violated in this

equation. For this sake, a modified DGLAP equation

was proposed to replace the GLR-MQ equation in

Refs. [6, 7], where the corrections of the gluon fusion

to the DGLAP equation lead to the shadowing and

antishadowing effects. Unfortunately, the integral so-

lutions either in the GLR-MQ equation or in other

modified DGLAP equations need the initial distribu-

tions on a boundary line (x,Q2
0) at fixed Q2

0, and they

contain the unknown input nuclear shadowing and

antishadowing effects. Close, Qiu and Roberts[8] con-

structed a parton fusion model by QCD arguments

and try to evolve the input parton distributions in

the nuclear target, however, the results of this parton

fusion model in the small x region are sensitive to the
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input parton distributions[9], which leads to a large

uncertainty in the predictions. On the other hand,

recently nuclear unintegrated gluon distribution be-

comes a useful and intuitive phenomenological lan-

guage for applications to many high-energy nuclear

collisions. However, the DGLAP equation and its

modified forms are based on the collinear factoriza-

tion scheme and they don’t predict the evolution of

the unintegrated parton distributions.

Instead of the above-mentioned modified DGLAP

equations, an alternative QCD research for the nu-

clear shadowing and antishadowing is to modify the

BFKL equation[10], which is directly written for the

unintegrated gluon distribution. The evolutions of

the BFKL-type equations are along the small x-

direction: the input gluons distribute on the bound-

ary line (x0,k
2) at fixed x0, where the gluon fusion

begins, and all parton distributions both in a free nu-

cleon and in a bound nucleon at x < x0 are the evo-

lution results of these equations. There are several

nonlinear evolution equations considering the correc-

tions of the gluon fusion to the BFKL evolution. One

of the most widely studied models is the Balitsky-

Kovchegov (BK) equation[11]. The BK equation is

originally derived for the scattering amplitude in the

transverse coordinator space. The nonlinear terms

in the BK equation are formed by the dipole split-

ting and the screening effect origins from the double

scattering of the probe on the target. A remarkable

solution of the BK equation is the so-called satura-

tion, where the amplitude is a completely flat spec-

trum. However, the amplitude in the BK equation is

re-normalized to identify the coefficient of the non-

linear term with that of the linear term. There-

fore, the relation of the unintegrated gluon distribu-

tion with this scattering amplitude is unclear and it

is model-dependent[12]. Besides, it is similar to the

GLR-MQ equation, the BK equation is irrelevant to

the antishadowing effect. Recently, a new modified

BFKL equation incorporating the shadowing and an-

tishadowing corrections of the gluon recombination to

the unintegrated gluon distribution was proposed by

Ruan, Shen, Yang and Zhu (the RSYZ equation)[13].

The purpose of this work is to explain the ob-

served nuclear shadowing and antishadowing effects

for the parton distributions using the RSYZ equation.

The Q2- and x-variations of the nuclear parton dis-

tributions in the RSYZ equation are detailed in this

work. Particularly, we predict the unintegrated nu-

clear gluon distributions using the RSYZ equation.

The results show a logarithmic increasing spectral

height, which is not identical to the prediction of the

BK equation in the transverse coordinator space but

is similar to a mean field result.

The paper is organized as follows. In Section 2 we

give the RSYZ equation and its modifications in the

nuclear target. The predictions of the RSYZ equa-

tion to the nuclear shadowing and antishadowing ef-

fects in the quark- and gluon-distributions as well as

in the unintegrated gluon distributions are presented

in Section 3.

2 The RSYZ evolution equation

The unintegrated gluon distribution fN in a pro-

ton obeys the RSYZ evolution equation at small x[13],

where the contributions of the gluon recombination to

the BFKL dynamics are considered
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where R = 1 fm (or < 1 fm) if the gluons are uniformly

distributed in a nucleon (or the gluons are located in

the hot-spots); x0 is the starting point of the gluon

fusions. Note that the shadowing and antishadowing

coexist in the region x 6 x0, while there is only the

antishadowing in x0 6 x 6 2x0
[14].

We should point out that the nonlinear terms in

Eq. (1) are really from the evolution kernel of the MD-

DGLAP equation[6], where the double logarithmic ap-

proximation is taken, i.e., both the x and transverse

momenta are strongly ordered. Obviously, this ap-

proximation satisfies such x-region, where the values

of x are not extra small. On the other hand, the linear

terms of Eq. (1) are the BFKL-kernel, which works

in the small x range. The mix of two approximations

in Eq. (1) is feasible for the discussions of the nuclear

shadowing and antishadowing effects, since they oc-

cupy the transition range from a middle x to small

x. The RSYZ is directly derived for the unintegrated

gluon distribution, which relates to the (integrated)

gluon distribution using

GN(x,Q2)≡xgN(x,Q2) =

∫Q2

k2

min

dk2

k2 fN(x,k2). (2)
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Since the density of gluons increases rapidly with

decreasing x, the sea quark distributions are increas-

ingly dominated by the gluon distribution, via the

DGLAP splitting G → qq. Thus, the deep inelastic

structure function at small x reads[15]

F2N(x,Q2) = 2

∫1

x

dx1

∫Q2

dk2

k2

∫ k2

dk′2

k′2 fN
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)

×

∑

q

e2
q

αs

2π

PqG(x1). (3)

where PqG(x1) is the DGLAP splitting function.

Now we discuss the RSYZ equation in the nuclear

target. The gluons with smaller x exceed the longi-

tudinal size of nucleon in a nucleus. We assume that

the gluons inside the nucleus are completely overlap-

ping and fusion along the longitudinal momentum

direction at the evolution starting point x0. Thus,

the strength of the nonlinear recombination terms in

Eq. (1) should be scaled by A1/3 in a nucleus. On

the other hand, although the softer gluons of differ-

ent nucleons with extra small k2 may be correlated

on the transverse plane because the integrations on

k2 can go down to a very small value in Eq. (1), we

neglect these corrections due to fN(x,k2 → 0)→ 0. In

this simple model the RSYZ equation in the nucleus

becomes
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The distributions GA(x,Q2) and F2A(x,Q2) in the

nucleus are computed by using the equations corre-

sponding to Eqs. (2) and (3).

3 Numerical analysis and summary

We use a parameter form of a BFKL-like solution

as the input distribution[13] at 2x0 = 0.3

fN(2x0,k
2) = fA(2x0,k

2) =

β

√

k2 x−λBFKL

0
√

ln
1

x0
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(

−
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2λ′ ln(1/x0)

)

, (5)

where λBFKL = 12αs/(π ln2) and β and λ′ are two

parameters.

The computations of the RSYZ equation need pre-

know the value of fN(A)(xi/2,k2) at the step x = xi.

For this sake, we proposed the following program in

Ref. [13]
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2
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where fN(A),Shadowing(xi/2,k2) (or fN(A),BFKL(xi/2,k2))

indicates that the evolution from xi to xi/2 is con-

trolled by Eq. (1) but without the antishadowing con-

tributions (or is controlled by the BFKL equation).

The parameter η implies the different velocities ap-

proaching the BK dynamics. We temporarily take

η =∞ and we will indicate it is appropriate.

At first, we use the well known F2N(x,Q2)-data[16]

of a free proton to determine the parameters in the

computations. Then we predict the distributions in

nuclei. In this work we fix the coupling constant to

be αs =0.3. The dashed curve in Fig. 1 is our fitting

result using β = 7.22, λ′ = 0.002 and R = 2.6 GeV−1.

Note that the contributions from the valence quarks

to F2 at x > 0.1 are necessary and they can be param-

eterized by the difference between the dashed curve

and the experimental solid curve in Fig. 1.

Fig. 1. The fit of the computed F2P(x,Q2 =
10 GeV2) in proton by the RSYZ equation us-
ing the input Eq. (5) (dashed curve). The
contributions of the valence quarks are pa-
rameterized by the differences between solid
and dashed curves. The data are taken from
Ref. [16].

Figure 2 shows the predictions of the RSYZ equa-

tion for the Ca/C, Ca/Li, Ca/D and Cu/D compared
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with the EMC and NMC results[17, 18]. The agree-

ment is acceptable. Fig. 3 indicates that the enhance-

ment in the Sn gluon distribution with respect to that

in C observed by NMC[19] is consistent with our pre-

dictions.

Fig. 2. Predictions of the RSYZ equation com-
pared with the ratios of the structure func-
tions for various nuclei. The data are taken
from Refs. [17, 18]. All curves are for Q2 =
10 GeV2.

Fig. 3. Predictions for the ratio of the gluon
distributions in Sn/C. The curve is the result
of the RSYZ equation for Q2 = 10 GeV2 and
the data are taken from Ref. [19].

No significant Q2-dependence on the ratios of

the structure functions at small x has been con-

cluded in the present experimental precision. How-

ever, it does not prevent us exposing the possible

Q2-variations of the nuclear shadowing, which may

be hidden in the larger experimental errors. The ra-

tios GCa(x,Q2)/GD(x,Q2) for gluon distributions at

Q2 = 2 and 10 GeV2 using Eqs. (1) and (2) are given

in Fig. 4(a). The Q2-variations of the gluon ratios are

predicted in the region 10−4 < x < 10−1 in our model.

The logarithmic slope b in GA/GA′ = a + b lnQ2 is

positive. However, the corresponding slope in the ra-

tio of the structure functions F2Ca/F2D is negative

(see Fig. 4(b)). For example, the predicted Q2-slope

for calcium at x ≈ 4 × 10−2, b ≈ −0.046, and at

x ≈ 10−2, b ≈−0.03, the results are compatible with

the measured data in Ref. [20]. A more significant

Q2-dependence of the structure function ratios can be

found in the heavy nucleus F2Xe/F2D. A flatter ratio

at x < 10−2 in the E665 data[21] was presented. How-

ever, it can’t be understood as the saturation behav-

ior, where the parton fusion balances the parton split-

ting. The reason is that the parton densities in the

proton still increase toward the small x-direction at

x < 0.01 (see Fig. 1). Alternatively, we consider that

this behavior is a consequence of the Q2-variations of

the structure function ratios since the experimental

point with the smaller x corresponds to the smaller

value of Q2 in Fig. 5.

Fig. 4. (a) Q2-dependence of the ratios for the
gluon distributions Ca/D in the RSYZ equa-
tion. (b) Similar to (a) but for the the struc-
ture functions.

Fig. 5. Q2-dependence of the ratios for the
structure functions Xe/D in the RSYZ equa-
tion. The data are taken from Ref. [21].

An important parameter in the computing RSYZ

equation is η in Eq. (5). The observed nuclear shad-

owing and antishadowing provide an example to de-

termine the value of η. The results incline to a mini-

mum antishadowing, i. e., η =∞.
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Fig. 6. Predicted spectrum dG/dk2 = f(x,k2)/
k2 on the k2-space in various nuclear tar-
gets in the RSYZ equation. Dotted curves
x = 10−5, dashed curves x = 10−6 and solid
curves x= 10−7.

Comparing with the modified DGLAP equation,

the RSYZ equation directly predicts the nuclear un-

integrared gluon distributions, which are important

information for the researches of high energy nu-

clear collisions. We compute the unintegrated gluon

distributions in different nuclear targets using the

RSYZ equation. In Fig. 6 we plot the spectra of the

gluon density on the transverse momentum squared

dG/dk2 ≡ dG/dQ2|Q2=k2 = f(x,k2)/k2 ∼ k2. The

BK equation on the transverse coordinator space pre-

dict the saturation solutions, where the amplitude

is a completely flat spectrum at k2 < Q2
s (x), and

the spectral height is irrelevant to the values of x

(i.e., the geometric scaling); Q2
s (x) is the saturation

scale. The saturation limit and the geometric scal-

ing are expected to appear in the larger nucleus,

where the shadowing effects are enhanced. How-

ever, the logarithmic increasing spectral height in

our results is not identical to this prediction of the

BK equation but is similar to the mean field result:

dG/dk2 ∝ ln(Q2
s (x)/k2)[22].

Finally, we discuss the dependence of our solutions

with the input distributions. For this sake, we change

the parameters in Eq. (24) to: β = 0.15, λ′ = 9.64,

R = 2.4 GeV−1 and strongly distort the input form.

Then we repeat our calculating programs. We find

that the results are insensitive to the input distribu-

tions.

In summary, the nuclear shadowing and antishad-

owing effects are explained by a unitarized BFKL

equation. The Q2- and x-variations of the nuclear

parton distributions are detailed based on the level

of the unintegrated gluon distribution. In particular,

the asymptotical behavior of the unintegrated gluon

distribution in various nuclear targets is studied. We

find that the geometric scaling in the expected sat-

uration range is violated. Our results in the nuclear

targets are insensitive to the input distributions if the

parameters are fixed by the data of a free proton. We

believe that these results are useful in studying the

ultrarelastivistic heavy ion collisions.
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