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Theoretical investigation of a backward wave oscillator *
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Abstract From the linear Vlasov equation, the theoretical investigation on relativistic backward wave os-

cillator is performed. The relationship between the microwave power and the guiding magnetic field, which

accords with the results of the particle simulation and experiments, is deduced.
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1 Introduction

Relativistic backward wave oscillator (RBWO),

whose output microwave power relates closely to the

guiding magnetic field[1—3], is one of the most promis-

ing microwave devices. There are many theoretical

results[4—6] on the relationship between the output

microwave power and the parameters of the electron

beam, which are attained on the condition of the in-

finite guiding magnetic field and can’t reveal the re-

lationship between the output microwave power and

the guiding magnetic field. There are also some theo-

retical investigations[7, 8] on the relationship between

the output power and the guiding magnetic field, but

their conclusions are recondite.

Based on the Vlasov equation, the theoretical in-

vestigation of RBWO, which gives out a pellucid re-

sult on the relationship between the output power

and the guiding magnetic field, is performed in this

paper.

2 Operation equation of RBWO

In RBWO, the interaction between the electron

beam and the microwave electromagnetic field which

has the temporal and spatial dependence of a wave in

the empty structure causes the electromagnetic wave

to vary slowly in time and axial distance. The back-

ward wave of TM01 mode can be expressed in the

following ways:

EZ =
∑

n

EZnJh(Γnr)ei(kZnZ+hθ+ωt) , (1)

Eθ =
∑

n

kZnh

Γ 2
nr

EZnJh(Γnr)ei(kZnZ+hθ+ωt) , (2)

Er =
∑

n

−ikZn

Γn

EZnJ ′

h(Γnr)ei(kZnZ+hθ+ωt) , (3)

Bθ =
∑

n

−iω

Γnc2
EZnJ ′

h(Γnr)ei(kZnZ+hθ+ωt) , (4)

Br = −

∑

n

ωh

Γ 2
nc2r

EZnJh(Γnr)ei(kZnZ+hθ+ωt) , (5)

BZ = 0 , (6)

where kZn = kz +nk0 and Γ 2
n =

(

ω

c

)2

−k2
Zn.

2.1 Expression of the perturbed electron dis-

tribution function f1

When the electrons drift in a slow wave struc-

ture (SWS), they would be affected by the guiding

magnetic field and the microwave. We will begin our

analysis from these two aspects in the article.

Under the affection of the guiding magnetic field,

the electrons have an axial drift and a Larmor cy-

clotron, but its distribution function f0 is invariable.

From Fig. 1, the guiding centre coordinate of the elec-

tron can be expressed as[9]

r̃ =
[

r2 +r2
L−2rrL sin(φ−θ)]1/2 , (7)

where rL =
p⊥

mΩe

is the Larmor radius, Ωe =
eB0

m
is
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the rest-mass cyclotron frequency, and Ωc =
Ωe

γ
is the

cyclotron frequency.

Under the affection of microwave, there is a

perturbed electron distribution function f1(x,p, t)

(where the polar coordinates x are (r,θ,Z), and p

are (p⊥,φ,pZ)) added to the f0. The f1 can be gained

from the Vlasov equation

df1

dt
=

∂f1

∂ t
+v •

∂f1

∂x
−

e

m
(v×B0) •

∂f1

∂v
=

e(E +v×B) •∇pf0 , (8)

where

f0 =
nb

2πp⊥

δ(p⊥−p⊥0)δ(pZ −pZ0) , (9)

v =
p

γm
=

1

γm
(p⊥e⊥+pZeZ) , (10)

∇pf0 =
∂f0

∂p⊥

e⊥+
∂f0

∂pZ

eZ , (11)

where nb is the electron density, and e⊥, eZ are the

unit vectors along p⊥ and axis respectively. It can be

seen from Fig. 1 that

e⊥ = cos(φ−θ)er +sin(φ−θ)eZ . (12)

Substituting Eqs. (10), (11) and (12) into Eq. (8),

we get

df1

dt
= e

{

Er cos(φ−θ)+Eθ sin(φ−θ)+

pZ

γm

[

Br sin(φ−θ)−Bθ cos(φ−θ)
]

} ∂f0

∂p⊥

−

ep⊥

γm

[

Br sin(φ−θ)−Bθ cos(φ−θ)
] ∂f0

∂pZ

+

eEZ

∂f0

∂pZ

. (13)

Fig. 1. Projection of the electron orbit (indi-
cated by circle) on the cross-sectional plane.
rL is the Lamor radius. Point 0 is the centre
of the waveguide and point B is the centre of
the cyclotron orbit. Point A is the instanta-
neous position of the electron.

Fig. 2. Geometric representation of the vari-
ables used in the Bessel-function summation
theorem.

By using the Bessel-function identities

J ′

h(x) =
1

2
[Jh−1(x)−Jh+1(x)],

Jh(x) =
1

2

x

h
[Jh−1(x)+Jh+1(x)]

and the Bessel-function summation theorem (whose

variables are defined in Fig. 2)

e±inθ1Jn(x1) =
∑

q

Jn+q(x2)Jq(x3)e
±iqθ2 .

We can get

Er cos(φ−θ)+Eθ sin(φ−θ) =

∑

n

∑

q

EZn

kZn(h+q)

Γ 2
nrL

Jh+q(ΓnrL)Jq(Γnr̃)×

eiqφ̃ei(kZnZ +hφ+ωt− hπ

2
) , (14)

Br sin(φ−θ)−Bθ cos(φ−θ) =

−

∑

n

∑

q

EZn

ω

c2

(h+q)

Γ 2
nrL

Jh+q(ΓnrL)Jq(Γnr̃)×

eiqφ̃ei(kZnZ +hφ+ωt− hπ

2
) , (15)

EZ =
∑

n

∑

q

EZnJh+q(ΓnrL)Jq(Γnr̃)eiqφ̃
×

ei(kZnZ+hφ+ωt−hπ

2
) . (16)

where φ̃ = arctan

[

r cos(φ−θ)

rL−r sin(φ−θ)

]

.

Substituting Eqs. (14), (15) and (16) into Eq. (13),

and for axisymmetric modes h = 0, we get

d

dt
f1 = vZ0

d

dZ
f1 =

e
∑

n

∑

q

EZnei(kZnZ+ωt+qφ̃)Fq(r̃,p⊥,pZ) , (17)

where
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Fq(r̃,p⊥,pZ) = Jq(Γnr̃)Jq(ΓnrL)×

[

q

Γ 2
nrL

(

kZn−
pZ

γmc

ω

c

)

∂f0

∂p⊥

+

(

1+
p⊥

γmc

ω

c

q

Γ 2
nrL

)

∂f0

∂pZ

]

.

Since d/dt in Eq. (17) denotes time differentiation

along the unperturbed electron orbit,

f1 =
e

vZ0

∑

n

∑

q

EZnFq(r̃,p⊥,pZ)×

∫0

−∞

dZ ′ei[kZnZ′+ωt(Z′)+qφ̃(Z′)] ,

where

Z = vZ0t, t(Z ′) = t−
1

vZ0

(Z−Z ′),

φ̃(Z ′) = φ̃−Ωc

(Z−Z ′)

vZ0

.

Therefore

f1 = e
∑

n

∑

q

EZnFq(r̃,p⊥,pZ)

i(kZnvz0 +qΩc +ω)
ei(kZnvz0t+ωt+qφ̃) .

(18)

2.2 The output microwave power

2.2.1 The expression for output power

The output power averaged over time is given by

P =

∫
d3x

∫
d3p

ω

2π

∫
dt[(−evZE∗

Z)f1], (19)

where ∫
d3p =

∫
∞

0

p⊥dp⊥

∫ 2π

0

dφ̃

∫
∞

−∞

dpZ ,

∫
d3x =

∫ rb

0

r̃dr̃

∫ 2π

0

dθ

∫Ls

0

dZ.

Therefore

P =−e2E24π
2Ls

r2
b

2

∑

n,q

An

{

[Jq(ΓnrL)]2
[

[J ′

q(Γnrb)]
2 +

[

1−
q2

(Γnrb)2

]

[Jq(Γnrb)]
2

]∫
∞

0

p⊥dp⊥

∫
∞

−∞

dpZ

pZ

γm
×

[

q

Γ 2
nrL

(

kZn−
pZ

γmc

ω

c

)

∂f0

∂p⊥

+

(

1+
p⊥

γmc

ω

c

q

Γ 2
nrL

)

∂f0

∂pZ

]

/

(kZnvz0 +qΩc +ω)2
}

, (20)

where

An =

1−cos

(

2π

kZn

ω
δvZ0

)

2πkZnδvZ0

, δ =
vZ0−vphase

vZ0

,

rb is the averaged electron radius, and E2 =
∑

n

E2
Zn.

In Eq. (20), we are only interested in two items.

The first one is for q = 0 and n = −1, which gives

the Cherenkov oscillation denoting the interaction be-

tween the electron beam and the −1 harmonic wave

of the backward wave. The other one is for q = −1

and n = 0, which denotes the interaction between the

electron beam and the fundamental wave of the back-

ward wave. Therefore

P ≈
A−1e

2E2νc2
πLsr

2
b

γ(kZ−1vZ0 +ω)2
[J0(Γ0rL)]2

[

[J1(Γ−1rb)]
2 +

[J0(Γ−1rb)]
2
]

−A0e
2E2νc2

πLsr
2
b[J1(Γ0rL)]2×

{[

J0(Γ0rb)−
1

Γ0rb

J1(Γ0rb)

]2

+

[

1−
1

(Γ0rb)2

]

[J1(Γ0rb)]
2

}

×

νZ0

γ

kZ0−vZ0ω/c2

(kZ0vZ0−Ωc +ω)2
= P1−P2 , (21)

where ν =
nbe

2

mc2
is Budker parameter.

2.2.2 The discussion on the output power

When Ωc is big enough, rL inclines to 0. Therefore

P ≈
A−1e

2E2νc2
πLsr

2
b

γ(kZ−1vZ0 +ω)2
[

[J1(Γ−1rb)]
2 +[J0(Γ−1rb)]

2
]

.

(22)

As for Eq. (22), P has the maximum value when

ω =−kZ−1vZ0 = (k0−kZ0)vZ0 which is considered as

the condition for the Cherenkov oscillation.

Fig. 3. The relationship between Ωc and P1, P2.

Fig. 4. The relationship between Ωc and P .
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Figure 3 gives the relationships between Ωc and

P1, P2 respectively. Fig. 4 gives the relationships be-

tween Ωc and the output power P .

It can be seen from Eq. (21) that we have to elab-

orate the SWS to let kZ0 − vZ0ω/c2 = 0, so as to

maximize the output power.

3 Example

Figure 5 is the sketch of a BWO, which is de-

signed with low magnetic field. Figs. 6(a) and 6(b)

are the relationships between the output power and

the guiding magnetic field which are respectively at-

tained through simulation and experiment. The re-

sults accord with the analyzed result on the whole.

Fig. 5. The sketch of the BWO with low mag-
netic field.

Fig. 6. The relationships between the output
power and the guiding magnetic field which
are through (a) simulation (b) experiment.

4 Conclusion

Based on the linear Vlasov equation, the relation-

ship between the microwave power and the guiding

magnetic field, which accords with the results of the

experiments[2, 10, 11], is deduced.
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