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Gain of harmonic generation in high gain

free electron laser *
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Abstract In a planar undulator employed free electron laser (FEL), each harmonic radiation starts from

linear amplification and ends with nonlinear harmonic interactions of the lower nonlinear harmonics and the

fundamental radiation. In this paper, we investigate the harmonic generation based on the dispersion relation

driven from the coupled Maxwell-Vlasov equations, taking into account the effects due to energy spread,

emittance, betatron oscillation of electron beam as well as diffraction guiding of the radiation field. A 3D

universal scaling function for gain of the linear harmonic generation and a 1D universal scaling function for

gain of the nonlinear harmonic generation are presented, which promise rapid computation in FEL design and

optimization. The analytical approaches have been validated by 3D simulation results in large range.
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1 Introduction

Free electron lasers (FELs) are devices that use

the relativistic electron beams passing through a

transverse periodic magnetic field in order to gener-

ate coherent electromagnetic radiation ranging from

the infrared to hard X-ray region[1]. Whether in the

case of a FEL oscillator or a single-pass FEL, the gain

length of the amplified radiation must be minimized

to achieve good FEL performance. Accordingly, three

dimensional (3D) FEL codes such as GENESIS1.3[2]

and TDA3D[3] have been developed to simulate FEL

performance. However, these codes require long CPU

running time on fast computers in FEL design and

optimization, making it an effort-consuming process.

Thus, the analytical estimate of FEL gain, an inter-

esting issue all through, has been studied by many

authors[1, 4—7]. Further study clarified the effects of

energy spread, emittance, and the focusing[8] of the

electron beam, and the diffraction and guiding[9] of

the radiation field in succession. The next important

step was the first 3D equations derived by Kim[10] to

deal with these effects simultaneously, but without

providing a solution. Using a variational technique

introduced by Xie[11], a universal scaling function for

FEL gain which is the first approximate solution of

the 3D equation was given by Yu[12]. In Yu’s solu-

tion, they assumed a “water-bag” model for unper-

turbed electron distribution in transverse phase space

and solved the dispersion relation[13] from coupled

Maxwell-Vlasov equations for the fundamental mode.

Later, Hafizi[14] considered a sheet beam of Gaus-

sian model, also for the fundamental mode. With

a novel approach in handling the coupled Maxwell-

Vlasov equations, Chin[15] derived an equation fit-

ting for any initial beam distribution and obtained

another approximate solution for the fundamental

mode. Moreover, Xie[16] provided a collection of for-

mulas relating FEL performance without derivation,

which allow quick evaluation of FEL design and opti-

mization for fundamental mode in multidimensional

parameters space, and by which LCLS FEL optimiza-

tion has been carried out[17].

In recent years, people are increasingly interested

by high gain and short wavelength FEL. Self ampli-

fied spontaneous emission[18] and high gain harmonic

generation[19] FEL are two leading candidates for ap-

proaching hard X-ray region. In comparison with the
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substantive cost in attaining a high energy electron

beam to achieve short wavelength region, harmonic

radiation in FEL holds great promise to reach shorter

radiation wavelengths or to relax some of the strin-

gent requirements on electron beam quality. There-

fore, investigation of the harmonic radiation in FEL

is on its way. On the one hand, simulation codes

such as GINGER[20], MEDUSA[21] and TDA-H[22] are

developed or modified to simulate harmonic genera-

tion. On the other hand, the analytical calculations

of the gain on the higher order odd harmonics[23],

the even harmonics and the off axis[24] were ongo-

ing. Bonifacio[25] gives the 1D model to illuminate

the linear harmonic generation due to initial smooth

distribution of electron beam and the nonlinear har-

monic interaction due to strong bunching in the fun-

damental. Dattoli[26] gives a set of expressions of har-

monic radiation with the limitation of the 1D treat-

ment. Kim and Huang[27] presented a 3D analy-

sis of harmonic radiation, in which the matrix for-

mulation of Xie[28] is employed to solve the disper-

sion relation on the basis of the coupled Maxwell-

Klimontovich equations, and their results have been

validated by the numerical simulations[29] and exper-

imental measurements[30], however, they mainly con-

centrate on the nonlinear harmonic interactions.

Here, we shall extend Yu’s work in FEL gain[12] for

the fundamental wavelength to the harmonics, and

give a more universal scaling function for FEL gain.

A planar undulator is assumed throughout the dis-

cussion. Since in a planar undulator employed high

gain FEL, the electron beam motion causes the odd

harmonics to be the most significant in the forward

direction, we only consider the odd harmonics in this

discussion. In this paper, we first describe the inter-

action between the electron beam and radiation field

in Section 2 by coupled Maxwell-Vlasov equations.

In Section 3, based on the dispersion relation driven

from the coupled equations, the scaling function for

the linear harmonic gain is derived. Thirdly in Sec-

tion 4, we give a simple discussion on the nonlinear

harmonic generation. Then, for the FEL parameters

in different spectral regions, we check our analytical

approach with the results simulated by 3D FEL code

TDA-H in Section 5. Finally, we present our conclu-

sions in Section 6.

2 Coupled Maxwell-Vlasov equations

Suppose a planar undulator with a sinusoidal

magnetic field in the y direction. Considering a rel-

ativistic electron beam with average energy γ0mc2

entering the undulator in the z direction, one ob-

serves the transverse wiggling motion, together with

the “figure of eight” longitudinal phase oscillations

in the resonant frame. This trajectory can give rise

to harmonic radiation. We denote the fundamental

radiation wavelength by λs and the period length of

the undulator magnet by λw The corresponding wave

numbers are ks = 2π/λs and kw = 2π/λw. Then, the

vector potential of planar undulator has the form

Aw = Aw cos(kwz)x̂ (1)

and the longitudinal velocity of the electron can be

approximated by

v‖ ≈ c

(

1− 1+K2 cos2(kwz)

2γ2

)

, (2)

where K ≡ eAw/mc is the undulator magnetic pa-

rameter. Now we represent the electric field in the

form

E =
1

2

∞
∑

n=1

En(r,z, t)exp[in(ksz−ωst)]+c.c., (3)

where r = (x,y) represents the transverse coordinates,

n is the odd number and En(r,z, t) is the slowly vary-

ing envelope function. The radiation electric field

En(r,z, t) satisfies the Maxwell’s equation as follows,

in MKS units,

1

2

(

∇2
⊥+

∂2

∂z2
− 1

c2

∂2

∂ t2

)

×

( ∞
∑

n=1

1

inωs

Enein(ksz−ωst)

)

+c.c. =−µ0Jx , (4)

where µ0 is the permeability of free space, and ∇2
⊥

is the transverse Laplacian. Denoting the energy and

position of the j-th electron by γjmc2 and (rj , zj), the

transverse current density for a beam of N electrons

is given by

Jx = ecK cos(kwz)

N
∑

j=1

1

γj

δ[r−rj(t)][z−zj(t)]. (5)

The wave equation is simplified by using the paraxial

approximation,

∂2

∂z2
− 1

c2

∂2

∂ t2
≈ 2inks

(

∂
∂z

+
1

c

∂
∂ t

)

. (6)

If we approximate γ0 = γj in the transverse velocity

of the beam and drop the exponential terms, then
(

1

2inks

∇2
⊥+

∂
∂z

+
1

c

∂
∂ t

)

En =−µ0cJxe−in(ksz−ωst) =

−µ0ec
2 K

γ0

N
∑

j=1

cos(kwz)e−in(ksz−ωst)×

δ[r−rj(t)][z−zj(t)]. (7)

We average Eq. (7) over the undulator period λw with

the help of the Bessel function expansion

e−in(ksz−ωst) cos(kwz)∼=
1

2
e−iθ[JJ ]n . (8)
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Here, θ = kwz + ksz − ωst + ξ sin(2kwz) describes

the FEL bunching action, [JJ ]n is the differ-

ence of the Bessel functions defined as [JJ ]n =

(−1)(n−1)/2[J(n−1)/2(nξ) − J(n+1)/2(nξ)], where ξ =

K2/(4+2K2). Then, we have the radiation electric

field equation from Eq. (7)
(

1

2inks

∇2
⊥ +

∂
∂z

+
1

c

∂
∂ t

)

En =

µ0ec
2K[JJ ]n
2γ0

N
∑

j=1

e−iθj δ(r−rj)δ(z−zj) . (9)

Furthermore, we let n0 be the peak density and

n0f(z,t,γ,r) be the distribution function such that

n(z,t,r) =

∫
n0f(z,t,γ,r)dγ be the particle density.

If we average the right hand side of Eq. (9) over a

small volume
(

1

2inks

∇2
⊥ +

∂
∂z

+
1

c

∂
∂ t

)

En =

µ0n0ec
2K[JJ ]n

2γ0

< e−iθ >

∫
fdγ . (10)

Now it is useful to introduce the dimensionless vari-

ables

τ = kwz,

x = r
√

2kskw,

p = dx/dτ,

k = kβ/kw,

f =

∞
∑

n=0

Fneinθ +c.c.

In these definitions, F0 represents the smooth dis-

tribution in the absence of the radiation field, and

other components Fn, near einθ, represent the cor-

responding electron beam bunching which will con-

tribute to the growth of the n-th harmonic radiation

significantly. Then, the evolution of the Vlasov distri-

bution function f can be governed by the continuity

equation
(

∂
∂τ

+θ′ ∂
∂θ

+γ′ ∂
∂γ

+x′ ∂
∂x

+p′ ∂
∂p

)

f = 0 . (11)

Thus, if we arrange the slow and fast components of

the beam distribution function properly and neglect

some oscillating terms, the coupled Maxwell-Vlasov

equations can now be written as
(

∂
∂τ

+
∂

∂θ
− i

n
∇2

⊥

)

En =
D1n

γ0

∫
dγ

∫
Fnd2p , (12)

(

∂
∂τ

+θ′ ∂
∂θ

+p
∂

∂x
−k2x

∂
∂p

)( ∞
∑

n=0

Fneinθ

)

=

( ∞
∑

n=1

D2n

γ
Eneinθ

)

∂
∂γ

( ∞
∑

n=0

Fneinθ

)

, (13)

with D1n = n0µ0ec
2K[JJ ]n/2kw, D2n = eK[JJ ]n/

4kwmc2, and

θ′ ≈ 2
γ−γ0

γ0

−
1

4
(p2 +k2x2),

γ′ =
∞

∑

n=1

D2n

γ
Eneinθ +c.c.

(14)

According to Eq. (12), the gain of the n-th harmonic

radiation is determined by the term Fn, therefore, we

separate the different order of eiθ in Eq. (13) and have
[

∂
∂τ

+θ′

(

∂
∂θ

+in

)

+p
∂

∂x
−k2x

∂
∂p

]

Fn =

u+v=n
∑

u=1

D2u

γ0

Eu

∂Fv

∂γ
. (15)

Now we introduce Fourier transform over θ,

En(τ,x,q) =

∫+∞

−∞

dθe−iqθEn(τ,x,θ) , (16)

Fn(τ,x,q,γ) =

∫+∞

−∞

dθe−iqθFn(τ,x,θ,γ) (17)

and Laplacian transform over τ ,

En(Ω,x,q) =

∫∞
0

dτeiΩτEn(τ,x,q) , (18)

Fn(Ω,x,q,γ) =

∫∞
0

dτeiΩτFn(τ,x,q,γ) . (19)

For simplicity, we use the same symbol En and Fn

for the functions and their transforms. Then the

Maxwell-Vlasov equation including the 3D effects can

be reduced as the following

(−iΩ+iq− i

n
∇2

⊥)En =
D1n

γ0

∫
dγ

∫
Fnd2p , (20)

[

−iΩ+iθ′(q+n)+p
∂

∂x
−k2x

∂
∂p

]

Fn =

u+v=n
∑

u=1

D2u

γ0

Eu

∂Fv

∂γ
. (21)

Since we deal with FEL eigenmode problems, the ini-

tial value process in Eqs. (20) and (21) can be and

have been neglected.

3 Scaling function for linear harmonic

gain

Generally, the solution for the n-th harmonic

bunching or for the n-th harmonic field amplitude

is a combination of two different components, one

given by the decoupled linear analysis, and another

driven by the exponential instability of the sum of

the lower nonlinear harmonic and the fundamental
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radiation[25]. In Eq. (21), the term ν = 0 repre-

sents the linear solution corresponding to the self-

amplification of the certain harmonic radiation, and

other terms represent the nonlinear harmonic solu-

tion corresponding to the strongly bunched electron

beam. Simply, one can deal with the two components

separately. In this section, we study the linear har-

monic generation.

Initially, we assume the electron beam has a uni-

form longitudinal distribution and a uniform trans-

verse density with the form

u(p2 +k2x2) =
1

πk2a2
Θ(k2a2−p2−k2x2) , (22)

where the step function Θ(ν) = 1 for ν > 0 and

Θ(ν) = 0 for ν < 0, a = (2kskw)1/2R0 is the scaled

beam size and R0 is the beam size. Moreover, a Gaus-

sian distribution around the value of γ0 with the en-

ergy spread σγ is applied in energy. Thus, we consider

the equilibrium distribution to be the form

F0 = h(γ)u(p2 +k2x2) . (23)

To obtain the linear part of the harmonic ra-

diation, we neglect the nonlinear parts and rewrite

Eq. (21):
[

−iΩ+iθ′(q+n)+p
∂

∂x
−k2x

∂
∂p

]

Fn =

D2n

γ0

Enh′(γ)u(p2 +k2x2) . (24)

Then using Eq. (24) we solve Fn in terms of En, and

invert this result in Eq. (20) to derive the dispersion

relation determining µn and En(x):
(

µn +
1

n
∇2

⊥

)

En =

D1nD2n

∫
h′(γ)

γ2
dγ

∫
d2pu(p2 +k2x2)×

∫
dse−iαnsEn(xcosks+(p/k)sinks) . (25)

We define αn = µn+(ω−ωr)/ωr−nθ′. To solve Eq. (25),

we must find a good approximation for the transverse

dependence of the field and the corresponding eigen-

value µn. For FEL process, the critical region is the

overlap between the beam and the field, yet the tail

discrepancy is less sensitivity. Therefore, a Gaussian

approximation will be close to the true field inside the

electron beam (x < a). As a test function, we choose

En(x) =







e−χn
x2

2a2 , x 6 a,

AH(1)
0 (x

√
µn), x > a.

(26)

Im(µn)1/2 > 0 is required to satisfy the boundary con-

dition at x → ∞, and H (1)
0 is the Hankel function.

Then the continuity of the logarithmic derivation at

x = a leads to

a
√

µn

H ′(1)
0 (a

√
µn)

H(1)
0 (a

√
µn)

=−χn . (27)

Substituting the trial function into (25), we multi-

ply Eq. (25) by xEn(x) and integrate from x = 0 to

x =∞[11]. Then we obtain

µna2(1−e−χn)− χn

n
[1−(1−χn)e−χn ] =

∫0

−∞

exp

[

−i

(

µn

Dn

+
ω−ωr

ωrDn

)

s−2

(

σγ

Dn

)2

s2

]

×

(

1−e−η+

η+

− 1−e−η
−

η−

)

sds

cos(ks/Dn)
. (28)

with

η± = 3is

(

k

Dn

)

(ksε)+
χn

2

[

1∓cos

(

k

Dn

s

)]

,

Dn =

(

2Z0e

πmc2

Ip

γ0

K2

1+K2/2

)1/2

[JJ ]n.

(29)

Equations (27) and (28) can be numerically solved

to determine the complex parameters χn and µn/Dn.

Therefore, the gain function can be expressed in the

scaled form

Im(µn)

Dn

=
1

2kwLGnDn

= G(ksε,
σγ

Dn

,
kβ

kwDn

,
ω−ωs

ωsDn

) .

(30)

The scaling parameter Dn is a measure of the trans-

verse electron current. Hence, we present a more uni-

versal scaling function for FEL gain, the fundamental

and the linear harmonic generation included. When

making n=1, our results reduce to the one given by

Yu[12].

Starting from the Maxwell-Vlasov equations, we

derive a set of self consistent, scaled equations to de-

scribe the interaction between the electron beam and

the field, the 3D effects and the harmonic radiation

included. In comparison with Kim and Huang[27],

the relationship between the linear and nonlinear

harmonic interactions is more easily read from our

equations. Besides, we give a dispersion relation for

the linear harmonic gain, which we solved by the

variational approximation method[11], while the ma-

trix formulation method[28] is employed by Kim and

Huang[27]. What’s more, the scaling function pre-

sented here provides a useful way to describe the de-

pendence of the FEL gain on the electron parameters.

As an example, Fig. 1 shows us a quick estimate of

the 3rd linear harmonic gain by covering most of the

practical range of the FEL parameters.

The success of our analysis may depend largely

on the electron distribution and the choice of the test

function. The test function in Eq. (26), actually the

fundamental transverse mode E00, is the exact so-
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lution outside the electron beam, and inside it has

the correct leading behavior[9, 31]. Thus, the intrinsic

property of the variational approximation method[11]

assures that the error of the eigenvalue µn depends

quadratically on the small errors in the test function.

More generally, our analysis can be extended to any

kinds of initial electron distribution[14, 15] and other

high order transverse mode[31].

Fig. 1. Scaling function for the 3rd linear har-
monic gain vs. scaled emittance for several
values of kβ/kw/D3, corresponding to scaled
energy spread (a) σγ/D3 =0 and (b) σγ/D3 =
0.1 with the optimal detuning.

4 The nonlinear harmonic generation

The nonlinear harmonic generation occurs when

electron beam is strongly bunched in the ponderomo-

tive potential formed by the undulator field and the

radiation field of the fundamental frequency. In order

to determine the nonlinear harmonic interactions, we

consider only the nonlinear components and neglect

the linear component in Eq. (21). Thus, we rewrite

Eq. (21)
[

−iΩ+iθ′(q+n)+p
∂

∂x
−k2x

∂
∂p

]

Fn =

u+v=n
∑

v=1

D2u

γ0

Eu

∂Fv

∂γ
. (31)

Now we could deal with each order of the non-

linear harmonic generation in detail. Some further

assumptions such as that the fateful contribution to

the nonlinear harmonic generation is from the funda-

mental radiation and the even harmonic on the right

hand of Eq. (31) is neglected are applied before we go

on. Then for the 3rd nonlinear harmonic generation

one may obtain a dispersion relation

E3 ∝D13D
3
21E

3
1 . (32)

One could also observe that, for the 5th harmonic,

the leading nonlinear terms are

E5 ∝D15(D
5
21E

5
1 +D2

21E
2
1D23E3) . (33)

From these relationships, we can conclude that the

nonlinear harmonic generation grows faster than the

fundamental radiation, and the gain length scales in-

versely with the harmonic number. Therefore, people

are interested in the nonlinear harmonic generation,

which can have significant power and offer shorter

wavelength than the fundamental, thus extending the

applications of X-ray FEL facilities[27].

5 Numerical results

In this section, we shall study the harmonic con-

tents of two FEL examples, in DUV and X-ray spec-

tral regions respectively. The nominal parameters are

listed in Table 1, and the steady state simulations up

to the 3rd harmonic are performed by 3D FEL code

TDA-H[22] which is upgraded from TDA3D[3]. Figs. 2

and 3 show us the power growth of the fundamental

and the 3rd harmonic component as a function of the

radiator length for the nominal parameters of DUV

FEL and X-ray FEL example, where the region of the

linear harmonic and the nonlinear harmonic interac-

tion can be well recognized. Hence, we can obtain

the gain length of the fundamental and the harmonic

radiation easily.

Table 1. Nominal parameters of DUV and X-ray FEL.

DUV X-ray

electron beam and undulator

λs1/nm 262 3
λs3/nm 87.3 1
E/MeV 160 1200
Ip/A 300 2000

ε/(µm·rad) 6 2
σγ/γ(×10−4) 1 2

β/m 1.5 8
λw/cm 2.5 2

K 1.41 1.14

calculated FEL performances

ρ 0.0026 0.0010
LG1/m 0.53 1.53
LG3/m 1.24 6.65

We compare the simulation results with the ana-

lytical estimates introduced in this paper. Firstly, we

obtain that due to lower coupling coefficient the 3rd

linear harmonic radiation grows much more slowly

than the fundamental and performs more sensitive
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Fig. 2. The fundamental (262 nm, the solid)
and the 3rd harmonic radiation (87.3 nm, the
dashed) power growth for the nominal param-
eters of DUV FEL example.

Fig. 3. The fundamental (3 nm, the solid) and
the 3rd harmonic radiation (1 nm, the dashed)
power growth for the nominal parameters of
X-ray FEL example.

to the energy spread, peak current and emittance of

electron beam than that of the fundamental radia-

tion. Moreover, we observe that the gain length of

the 3rd nonlinear harmonic radiation is basically one

third of the fundamental, actually a little bit larger.

We also find that the 3rd nonlinear harmonic inter-

action is very sensitive to the “warm-beam” effects.

With the degradation of beam quality, one even can’t

clearly differentiate the linear and nonlinear harmonic

region. When we validate the analytical approach

with 3D simulation results for both DUV and X-ray

FEL example, the agreement for most of the practical

range of FEL parameters is good to within a factor

of 0.95.

6 Concluding remarks

In this paper, we describe an analytical approach

to solve the interaction between the electron beams

and the radiation fields which determines the gain

length of the fundamental and the odd harmonic gen-

eration in high gain FEL, including the “warm-beam”

effects and the optical effects of radiation field. Our

object is to provide a simple physical picture of the

gain of each harmonic radiation. We manage to de-

velop a universal scaling function to evaluate the de-

pendence of the gain on the physical parameters, and

it is checked by 3D FEL simulation. Our analytical

approach is consistent with the simulation results in

large range. It will be very useful in the optimization

of the FEL design.

We focus on the odd harmonic radiation in this pa-

per, thus, the even harmonic generation is neglected

in this discussion. Therefore, for obtaining the real-

istic results, further study should be undertaken.

The authors are grateful to Wu Juhao for provid-

ing TDA-H code.
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