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Abstract In this paper, the isotropic charged harmonic oscillator in uniform magnetic field is researched in

the non-commutative phase space; the corresponding exact energy is obtained, and the analytic eigenfunction

is presented in terms of the confluent hypergeometric function. It is shown that in the non-commutative

space§the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the

Landau problem.
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1 Introduction

In the past few years, problems in non-

commutative space have attracted much interest and

attention[1—4]. This is mainly because of the study

of open string attached to D-brane in the presence

of background B-field inducing non-commutativity in

its end points[5—8] and the research of Hall effect[9]

presenting non-commutativity in the canonical coor-

dinates and momentum. One way to deal with the

non-commutative space is to construct a new kind

of field theory, changing the standard product of the

fields by the star product (Weyl-Moyal):

(f ∗g)(x) = exp

(

i

2
θij ∂i ∂j

)

f(x)g(y)
∣

∣

x=y
. (1)

Here the constant parameter θij which is the real and

anti-symmetric matrix elements represents the non-

commutativity of the space; f and g are the infinitely

differentiable functions. In this theory some interest-

ing results have been found[10]. Another approach is

to assume the relation rules:

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = i~δij , [p̂i, p̂j ] = 0 . (2)

Thus, a non-commutative quantum mechanics can be

formulated, of which some relevant results have al-

ready been obtained[11—14] by the perturbation the-

ory in non-commutative space.

However, most physics problems in non-

commutative space are approximately solved by the

perturbation methods. In the present paper, the

Hamiltonian of isotropic charged harmonic oscillator

in uniform magnetic field is presented in the non-

commutative phase space; the corresponding exact

energy is obtained, and the analytic eigenfunction

is presented in terms of the confluent hypergeomet-

ric function. It is shown that the isotropic charged

harmonic oscillator in uniform magnetic field in non-

commutative phase space has the similar behaviors

to the Landau problem.

This paper is organized as follows. For compar-

ing result with the one in commutative space, in Sec-

tion 2, the isotropic charged harmonic oscillator in

uniform magnetic field is researched in commutative

space. In Section 3, the isotropic charged harmonic

oscillator in uniform magnetic field is exactly solved

in non-commutative phase space; the corresponding
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exact energy and analytic eigenfunction are obtained

respectively, meanwhile the non-commutative effect

is discussed.

2 Isotropic charged harmonic oscilla-

tor in commutative space

Considering an isotropic charged harmonic oscil-

lator with electric charge q and mass m moves in a

two-dimensional plane under a uniform magnetic field

B perpendicular to the plane and the vector poten-

tials have the following form[15]:

A1 =−
1

2
Bx2, A2 =

1

2
Bx1 . (3)

The Hamiltonian of the system is

H =
1

2m

[

(

p1 +
qB

2c
x2

)2

+

(

p2−
qB

2c
x1

)2
]

+

1

2
mω2(x2

1 +x2
2) =H0−

qB

2mc
Lz . (4)

With

H0 =
1

2m
(p2

1 +p2
2)+

mω2
0

2
(x2

1 +x2
2),

ω0 =

√

q2B2 +4m2ω2c2

4m2c2
, Lz =x1p2−x2p1 .

Considering [H0,Lz] = 0, the eigenfunction of H can

take the collective eigenstate of (H0,Lz). In order to

solve the eigenfunction of Schrödinger equation con-

veniently, let us take the pole coordinates in our dis-

cussion.

Letting

ϕ(ρ,φ) =χ(ρ)eimlϕ, ml = 0,±1,±2, · · · (5)

and substituting Eqs. (4), (5) into Hϕ=Eϕ, by sep-

arating variables, one can get the radial equations as

follows:
[

−
~

2

2m

(

∂2

∂ρ2
+

1

ρ

∂
∂ρ

−
m2

ρ2

)

+
1

2
mω2

0ρ
2

]

−

qB~

2mc
mlχ(ρ) =Eχ(ρ). (6)

Eq. (6) is the famous Schrödinger radial equation of

Landau problem. The energy of the system can be

given as follows[16]

Enρml
= ~ω0(2nρ + |ml|+1)+ml~

qB

2mc
, (7)

with nρ = 0,1,2, · · · ,ml = 0,±1,±2, · · · .

The corresponding radial eigenfunction is given by

(unnormalized)

χ(ρ)∼ ρ|ml|F (−nρ, |ml|+1,β2ρ2)exp[−β2ρ2/2], (8)

where F (−nρ, |ml|+1,β2ρ2) is the confluent hyperge-

ometric function and β2 =
qB

2~c
.

Then the eigenfunction of the system is

ϕ(ρ,φ) = Nρ|ml|F (−nρ, |ml|+1,β2ρ2) •

exp[−β2ρ2/2]eimlφ ,

nρ = 0,1,2, · · · , ml = 0,±1,±2, · · · , (9)

where N is the normalized constant.

3 Isotropic charged harmonic oscilla-

tor in non-commutative phase space

Although in the string theory only the coordi-

nate’s space exhibits a non-commutative structure,

considering the momentum is the partial derivatives

of the action with respect to the non-commutative

spatial coordinates, naturally, the momentum’s space

also exhibits a non-commutative structure[17]. In or-

der to describe a non- commutative phase space, re-

ferring to Ref. [1] the commutation relations in Eq. (2)

should be changed as follows:

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = i~δij , [p̂i, p̂j ] = iθ̄ij , (10)

with θij and θ̄ij being the anti-symmetric ma-

trixes with very small elements representing the

non-commutative property of space in the non-

commutative phase space.

In the following discussion, F̂ denotes the vari-

ables in the non-commutative phase space in or-

der to distinguish the variables F in commutative

space. According to Ref. [1], one possible way of

implementing algebra Eq. (10) is to construct the

non-commutative variables {x̂1, p̂1, x̂2, p̂2} from the

commutative variables {x1,p1,x2,p2} by the follow-

ing means of linear transformations:

x̂i =αxi−
1

2α~
θijpj , p̂i =αpi +

1

2α~
θ̄ijxj . (11)

In order to maintain the Bose-Einstein statistics,

parameters θ, θ̄ and α must satisfy the relation as

follows:

θ̄= 4~
2α2(1−α2)/θ . (12)

Now considering an isotropic charged harmonic

oscillator in a two-dimensional non-commutative

phase space, the Schrödinger equation can be writ-

ten as

Ĥ(x̂, p̂)ψ = Ĥ

(

αxi−
1

2α~
θijpj , αpi +

1

2α~
θ̄ijxj

)

ψ=Eψ . (13)

And the Hamiltonian of the system takes the form
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Ĥ =
1

2m
(p̂2

1 + p̂2
2)+

q2B2 +4m2ω2c2

8mc2
(x̂2

1 + x̂2
2)−

qB

2mc
(x̂1p̂2− x̂2p̂1) =

1

2m

[

(

αp1 +
θ̄

2α~
x2

)2

+

(

αp2−
θ̄

2α~
x1

)2
]

+
q2B2 +4m2ω2c2

8mc2

[

(

αx1−
θ

2α~
p2

)2

+

(

αx2 +
θ

2α~
p1

)2
]

−

qB

2mc

[(

αx1−
θ

2α~
p2

)(

αp2−
θ̄

2α~
x1

)

−

(

αx2 +
θ

2α~
p1

)(

αp1 +
θ̄

2α~
x2

)]

=

[

α2

2m
+
qBθ

4mc~
+

(q2B2 +4m2ω2c2)θ2

32mα2~2c2

]

(p2
1 +p2

2)+

[

α2(q2B2 +4m2ω2c2)

8mc2
+
qBθ̄

4mc~
+

θ̄2

8mα2~2

]

(x2
1 +x2

2)−

[

qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

(x1p2−x2p1) . (14)

In order to calculate conveniently, letting






















m̃=

[

α2

m
+
qBθ

2mc~
+

(q2B2 +4m2ω2c2)θ2

16mα2~2c2

]−1

ω̃2 =

[

α2(q2B2 +4m2ω2c2)

4mc2
+

qBθ̄

2mc~
+

θ̄2

4mα2~2

]

/

m̃

, (15)

Eq. (14) takes the form as the following

Ĥ =
1

2m̃
(p2

1 +p2
2)+

1

2
m̃ω̃2(x2

1 +x2
2)−

[

qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

(x1p2−x2p1) =

H ′
0−

[

qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

Lz , (16)

with H ′
0 =

1

2m̃
(p2

1 +p2
2)+

1

2
m̃ω̃2(x2

1 +x2
2). Observing

the similarity between the Hamiltonians (4) and (16),

the solution of eigenvalue problem can be worked out

in a manner to the one used in the previous section.

Letting

ψ(ρ,φ) =χ(ρ)eimlϕ, ml = 0,±1,±2, · · · . (17)

Substituting Eqs. (16), (17) into (13), by separating

variables, in the non-commutative phase space, one

can get the radial equations as follows

{[

−
~

2

2m̃

(

∂2

∂ρ2
+

1

ρ

∂
∂ρ

−
m2

ρ2

)

+
1

2
m̃ω̃2ρ2

]

−

[

qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

ml~

}

χ(ρ) =Eχ(ρ) ,

(18)

Eq. (18) is the famous Schrödinger radial equation of

Landau problem. The energy of the system can be

given as follows

Enρml
= ~ω̃(2nρ + |ml|+1)+

ml~

[

qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

. (19)

The corresponding radial eigenfunction is given by

(unnormalized)

χ(ρ)∼ ρ|ml|F (−nρ, |ml|+1, β̃2ρ2) •exp[−β̃2ρ2/2],

(20)

where

β̃2 =
qB

2mc
+
θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2
.

Finally, eigenfunction of the system in non-

commutative phase space is

ψ(ρ,φ) = Ñρ|ml|F (−nρ, |ml|+1, β̃2ρ2) •

exp[−β̃2ρ2/2]eimlφ ,

nρ = 0,1,2, · · · , ml = 0,±1,±2, · · · , (21)

where Ñ is the normalized constant.

In order to see the non-commutative effect explic-

itly, let us do some discussions.

First, let us do some discussions about the energy.

(1) When the space-space and momentum-mo-

mentum are all non-commutative, namely, θ̄ 6= 0,

θ 6= 0, from Eqs. (7) and (19), we can easily find

that the energy shift caused by the space-space and

momentum-momentum non-commutativivity can be
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given by

∆E = ~(2nρ + |ml|+1)(ω̃−ω0)+

ml~

[

θ̄

~
+

(q2B2 +4m2ω2c2)θ

8m~c2

]

, (22)

with ω̃, ω0 is defined by Eqs. (15) and (4), respec-

tively.

(2) When the space-space is non-commutative,

and the momentum-momentum is commutative,

namely, α= 1, θ̄= 0, θ 6= 0, the energy shift is

∆E= ~(2nρ+|ml|+1)(ω̃−ω0)+ml~
(q2B2 +4m2ω2c2)θ

8m~c2
,

with

ω̃=

√

(q2B2 +4m2ω2c2)

4m̃mc2
,

m̃=
1

1

m
+
qBθ

2mc~
+

(q2B2 +4m2ω2c2)θ2

16mα2~2c2

and ω0 is defined by Eq. (4).

(3) When the space-space and momentum-mo-

mentum are all commutative, namely, α = 1, θ̄ = 0,

θ= 0, then m̃=m, ω̃=ω0, ∆E= 0, the energy return

to the case of general quantum mechanics.

Second Comparing Eq. (9) with Eq. (21), we

can find the eigenfunction in non-commutative phase

space has the same form as the one in commutative

space. They are all the confluent hypergeometric

functions, but the parameter β̃ of confluent hyper-

geometric functions in non-commutative phase space

is different from the corresponding parameter β in

commutative space.

(1) When the space-space is non-commutative,

and momentum-momentum is commutative, namely

α= 1, θ̄= 0, θ 6= 0, then

β̃2 =
qB

2mc
+

(q2B2 +4m2ω2c2)θ

8m~c2
.

(2) When the space-space and momentum-mo-

mentum are all commutative, namely, α = 1, θ̄ = 0,

θ= 0, We have β̃2 =β2; the eigenfunction (21) returns

to the case of general quantum mechanics.

4 Conclusion

In conclusion, we have researched the Hamilto-

nian for the isotropic charged harmonic oscillator in

uniform magnetic field in the non-commutative phase

space. It is shown that in non-commutative phase

space, the isotropic charged harmonic oscillator in

uniform magnetic field can been seen as the Landau

problem. Thus, the corresponding exact energy has

been obtained, and the analytic eigenfunction pre-

sented in terms of the confluent hypergeometric func-

tion; meanwhile the non-commutative effect has been

discussed carefully.
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