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Abstract We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially

coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism.

The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering

theory. Two-pion interferometry with effects of the multiple scattering and source collective expansion is exam-

ined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically.

We do not find observable effect of either the multiple scattering or the source collective expansion on HBT

chaotic parameter.
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1 Introduction

The goal of the study of high-energy heavy-ion

collisions is to obtain the information of the particle-

emitting sources produced in the collisions. Pion in-

terferometry is an important tool for studying the

space-time structure and the coherence of the emit-

ting source[1—3]. As a produced pion propagates in

the source, it is subject to the collective motion of

the source, which can be described by a long-ranged

mean-field interaction, and the multiple scattering

with the particles in the source, which can be de-

scribed by short-ranged interactions. Recently, Wong

put forward formulas of two-pion interferometry for

a chaotic evolution particle-emitting source, using

quantum probability amplitudes in a path-integral

formalism[4—6]. Based on these formulas, Zhang et

al. calculated the two-pion correlation function for

a chaotic expanding source of hadronic gas with a

finite baryon density and investigated the effects of

multiple scattering and source collective expansion on

HBT radius[7]. They found that the effects of mul-

tiple scattering and source collective expansion lead

to HBT radius between the radii extracted from the

initial source configuration and the source freeze-out

configuration[7]. In this article, we shall follow the

work mentioned above to derive the two-pion HBT

correlation function for a partially coherent evolution

source and investigate the effects of multiple scatter-

ing and source collective expansion on the HBT in-

terferometry results for the source.

2 Theory

The two-pion HBT correlation function is defined

as

C(k1,k2) =
P (k1,k2)

P (k1)P (k2)
, (1)

where P (k) is the probability for observing a pion

with momentum k (single-particle momentum dis-

tribution), and P (k1,k2) is the probability for ob-

serving two pions with momentum k1 and k2 (two-

particle momentum distribution). For a partially co-

herent source, the 4-dimension source density can be
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expressed as[1]

ρ (x) = ρχ(x)+ρc(x) , (2)

where ρχ(x) and ρc(x) are the densities of the chaotic

and coherent components of the source. We assume

that the density of the chaotic component is propor-

tional to the total density of the partially coherent

source[1]

ρχ(x) =χρ (x) , (3)

where χ is called the chaotic factor, and the density

of the coherent component is then

ρc(x) = (1−χ)ρ (x) . (4)

2.1 Single-particle momentum distribution

In order to obtain the single-pion momentum dis-

tribution P (k), we need to know the probability am-

plitude Ψ(k,xd), for a pion to be produced from the

source with momentum k, and to arrive at the de-

tection point xd. The probability amplitude of a pion

produced at the source point x with momentum κ and

detected at xd with momentum k can be expressed

as

ψ(κx→kxd) =A(κ(x),x)eiφ0(x)K(κx→kxd) , (5)

where A(κ(x),x) and φ0(x) are the production ampli-

tude and phase, and K(κx→kxd) is the propagation

probability amplitude which can be expressed as[4—6]

K(κx→kxd) =

∫
d{x′}eiS(κx→kxd;x′) , (6)

where S(κx → kxd;x
′) is the propagation action

along a possible path {x′} from x to xd, and∫
d{x′}· · · denotes the sum over all the possible paths.

In Eq. (6), the dominant contribution in the sum

is from the trajectory along the classical path {x′

c},
for the other trajectory contributions may cancel

out each other in a great degree[1, 4—6]. Based on

the Glauber scattering theory[8], each collision of the

pion with the medium particles in the source will

add a phase factor to the propagation probability

amplitude[4—6]. While the source collective expan-

sion will change the pion momentum from κ to k

when it propagates in the source. Therefore, under

the approximation of classical path one has[4—6]

K(κx →kxd) = eiS(κx→kxd;x′

c
) = eiφs(x→xf ;x′

c
)×

exp

{
− i

∫xf

x

κ(x′

c)•dx′

c− ik•(xd−xf )

}
, (7)

where φs(x → xf ;x′

c) is the phase shift associated

with the multiple scattering, which is the sum over all

phase shifts of individual collisions of the pion with

the medium particles along the classical path {x′

c} in

the source, xf is the freeze-out point on the integral

path, and κ(x′) is the momentum of the pion in the

source, κ(x′

f ) = k.

First we consider the extended source as a dis-

crete source. The probability amplitude of a pion

with momentum k produced from the source and de-

tected at xd, Ψ(k,xd), can be obtained by summing

ψ(κx→kxd) over all x source points,

Ψ(k,xd) =
∑

x

A(κ(x),x)eiφ0(x)eiφs(x→xf ;x′

c
)×

exp

{
− i

∫xf

x

κ(x′

c)•dx′

c− ik•(xd−xf )

}
.

(8)

For a continuous extended source, the summation

should be transcribed as an integral over x,
∑

x
→∫

d4xρ(x). We divid the summation in Eq. (8) into the

coherent part
∑c

and the chaotic part
∑χ

. For sim-

plicity we let the production phases associated with

the coherent source be zero[1] in the following deriva-

tion, and denote φs(x→xf ;x′

c) as φs(x) and x′

c as x′.

Eq. (8) becomes

Ψ(k,xd) =

{[∑

x

c

A(κ(x),x)eiφc
0
(x) +

∑

x

χ

A(κ(x),x)eiφ
χ
0

(x)

]
×

eiφs(x) exp

{
− i

∫xf

x

κ(x′)•dx′− ik•(xd−xf )

}}
=

e−ik·xd

{[∫
d4xρc(x)A(κ(x),x)+

∑

x

χ

A(κ(x),x)×

eiφ
χ
0
(x)

]
eiφs(x) exp

{
− i

∫xf

x

κ(x′)•dx′ +ik•xf

}}
=

e−ik·xd

{
(1−χ)ρ̃(k)+

∑

x

χ

A(κ(x),x)eiφ
χ
0

(x)×

eiφs(x) exp

{
− i

∫xf

x

κ(x′)•dx′ +ik•xf

}}
, (9)

where

ρ̃(k) =

∫
d4xρ(x)A(κ(x),x)eiφs(x)×

exp

{
− i

∫xf

x

κ(x′)•dx′ +ik•xf

}
. (10)

The single-pion momentum distribution P (k) is the

absolute square of the amplitude Ψ(k,xd). From

Eq. (9), we expand the absolute square of the prob-

ability amplitude into terms which are independent

of φχ
0 and terms which contain φχ

0 . Terms which de-

pend on the production phase φχ
0 give zero contri-

bution because of the randomness of the production
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phases associated with the chaotic source. Therefore,

we have

P (k) =
∣∣Ψ(k,xd)

∣∣2 = (1−χ)2
∣∣ρ̃ (k)

∣∣2 +

χ

∫
d4xe−2Imφs(x)ρ(x)A2(κ (x),x) . (11)

It can be seen that the effect of multiple scattering be-

haves as an absorption factor, e−2Imφs(x), to the source

density ρ(x)[4—7].

2.2 Two-particle momentum distribution

We now derive the probability amplitude,

Ψ(k1,xd1;k2,xd2), of two pions with momentum k1

and k2 produced from the source and detected at xd1

and xd2. Because of the Bose-Einstein statistics of

identical bosons, the wave function of two-pions must

be symmetrical with respect to the interchange of the

labels of source points x1 and x2. Ψ(k1,xd1;k2,xd2)

can be written as

Ψ(k1,xd1;k2,xd2) =

1√
2

∑

x1,x2

eiφ0(x1)+iφ0(x2)×

eiφs(x1)+iφs(x2)

{
A(κ1(x1),x1)A(κ2(x2),x2)×

exp

{
− i

∫xf1

x1

κ1(x
′)•dx′− ik1

•(xd1−xf1)

}
×

exp

{
− i

∫xf2

x2

κ2(x
′)•dx′− ik2

•(xd2−xf2)

}
+

A(κ1(x2),x2)A(κ2(x1),x1)×

exp

{
− i

∫xf2

x2

κ1(x
′)•dx′− ik1

•(xd1−xf2)

}
×

exp

{
− i

∫xf1

x1

κ2(x
′)•dx′− ik2

•(xd2−xf1)

}}
. (12)

Dividing the summation in Eq. (12) into chaotic part

and coherent part, and letting the production phases

associated with the coherent source be zero, we ob-

tain

Ψ(k1, xd1;k2,xd2) =
1√
2
e−ik1 •xd1e−ik2·xd2 ×

{
2(1−χ)2ρ̃(k1)ρ̃(k2)+2(1−χ)ρ̃(k1)×

∑

x2

χ

eiφ
χ
0
(x2)eiφs(x2)A(κ2(x2),x2)M22+

2(1−χ)ρ̃(k2)
∑

x1

χ

eiφ
χ
0
(x1)eiφs(x1)×

A(κ1(x1),x1)M11 +

∑

x1,x2

χ

eiφ
χ
0
(x1)eiφs(x1)eiφ

χ
0
(x2)eiφs(x2)×

{
A(κ1(x1),x1)A(κ2(x2),x2)M11M22 +

A(κ2(x1),x1)A(κ1(x2),x2)M12M21

}}
, (13)

where

M11 = exp

{
− i

∫xf1

x1

κ1(x
′)•dx′ + ik1

•xf1

}
, (14)

M22 = exp

{
− i

∫xf2

x2

κ2(x
′)•dx′ + ik2

•xf2

}
, (15)

M12 = exp

{
− i

∫xf2

x2

κ1(x
′)•dx′ + ik1

•xf2

}
, (16)

M21 = exp

{
− i

∫xf1

x1

κ2(x
′)•dx′ + ik2

•xf1

}
. (17)

Because the randomness of the production phases

which associated with the chaotic source, we have

P (k1, k2) =
1

2

∣∣∣Ψ(k1,xd1;k2,xd2)
∣∣∣
2

= (1−χ )4×

∣∣ρ̃ (k1)ρ̃ (k2)
∣∣2 +(1−χ )2

{∣∣ρ̃ (k1)
∣∣2Pχ(k2)+

∣∣ρ̃ (k2)
∣∣2Pχ(k1)

}
+(1−χ )2ρ̃ (k1)ρ̃

∗(k2)×
∫
d4x2 ρχ(x2)A(κ2(x2),x2)A(κ1(x2),x2)×

e−2Imφs(x2)M22M
∗

12 +(1−χ )2ρ̃ (k2)ρ̃
∗(k1)×∫

d4x1 ρχ(x1)A(κ1(x1),x1)A(κ2(x1),x1)×

e−2Imφs(x1)M11M
∗

21 +Pχ(k1)Pχ(k2)+
∣∣∣∣
∫
d4xei(k1−k2)·x+iφmf(x,k1k2)−2Imφs(x)×

ρχ(x)A(κ1(x),x)A(κ2(x),x)

∣∣∣∣
2

, (18)

where

Pχ(k) =χ

∫
d 4xe−2Imφs(x)ρ (x)A2(κ (x),x) , (19)

and

φmf(x,k1k2) =−
∫xf

x

{
[κ1(x

′)−κ2(x
′)]−[k1−k2]

}
•dx′ .

(20)
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From Eqs. (1), (11), and (18), we can obtain the

two-pion correlation function C(k1,k2) for the par-

tially coherent source, which includes the effects of

multiple scattering and source collective motion. For

a completely coherent source, χ = 0, the correlation

function will be equal to unit. While for a completely

chaotic source, χ= 1, C(k1,k2) will become the two-

pion correlation function as in Ref. [4].

3 Model calculation

We consider a pion-emitting source of hadronic

gas with a finite baryon density produced in the high-

energy heavy-ion collisions at AGS energies. As in

Ref. [7], we assume that the hadronic gas consist of

only nucleons, ∆(1232), and pions, and the source

has a spherical geometry for simplicity[7]. We use rel-

ativistic hydrodynamics to describe the source evolu-

tion. The energy-momentum tensor of a thermalized

fluid element in the center-of-mass frame of the source

is[9, 10]

T µν(x) =
[
ε(x)+p (x)

]
uµ(x)uν(x)−p (x)gµν , (21)

where ε, p, and uµ = γ(1,v) are respectively the en-

ergy density, pressure, and 4-velocity of the element,

and gµν is the metric tensor. The local conservation

of energy and momentum can be expressed by

∂µT
µν(x) = 0, (ν= 0,1,2,3). (22)

The conservation of baryon number gives

∂µ j
µ

b (x) = 0, (j µ

b =nbu
µ), (23)

where j µ

b is the 4-current-density of baryon and nb is

baryon density. In the thermalized element, the num-

ber density ni, the energy density εi, and the pressure

pi of the particle species i can be expressed in terms of

local temperature T (x) and local chemical potencial

µi(x) by

ni =
4πgi

(2π)3

∫
∞

mi

fiE
√
E2−m2

i dE , (24)

εi =
4πgi

(2π)3

∫
∞

mi

fiE
2
√
E2−m2

i dE , (25)

pi =
1

3

4πgi

(2π)3

∫
∞

mi

fi(E
2−m2

i )
3/2 dE , (26)

where

fi =
1

exp[(E−µi)/T ]±1
, (27)

gi and mi are the internal freedom and mass of par-

ticle species i, and the sign (+) or (−) is for fermions

or bosons. The fluid energy density ε and pressure p

are the sum

ε=
∑

i

εi, p=
∑

i

pi . (28)

For a given set of variable (T,µi) (i = 1,2, · · · ), we

can obtain the equation of state p = p (ε,nb) of the

hadronic gas from Eqs. (24)—(28). With the equa-

tion of state and initial conditions of the source, one

can solve the equations of motion (22) and (23), and

finally obtain the space-time variations of density, ve-

locity, and thermodynamical functions of the fluid

elements[7, 10]. In our model calculations, the initial

source expanding velocity is zero and the initial en-

ergy density of the source is taken as a Gaussian dis-

tribution, ε(0, r) = ε0 er2/2R2
0 , with ε0=0.5 GeV/fm3

and R0=4.0 fm[7].

Knowing the hydrodynamical solution as the

space-time variations of density, velocity, and ther-

modynamical functions, we can calculate the P (k)

and P (k1,k2) according to Eqs. (11) and (18). In our

calculations, the freeze-out temperature Tf is taken

as 0.5T (t = 0, r = 0) ≈ 70 MeV. The pion produc-

tion amplitude A(κ(x),x) is proportional to the Bose-

Einstein distribution characterized by the local tem-

perature T (x) and the local chemical potential µπ(x)

at the produced point x, in the local frame of the

fluid element. The absorption factor due to multiple

scattering is[4—7]

e−2Imφs(x) = exp

(
−

∫xf

x

σabs(
√
sπN )nN (x)dl

)
, (29)

where σabs(
√
sπN ) is the absorption cross section of

π+N→∆ at the center-of-mass energy
√
sπN and dl

is the spatial line element along the classical path of

particle propagation.

Using the relative momentum of the two pions,

q = |k1 −k2|, as variable, we can construct the two-

pion correlation function C(q) from P (k1,k2) and

P (k1)P (k2) by summing over k1 and k2 for each q

bin,

C(q) =
Cor(q)

Uncor(q)
, (30)

where

Cor(q) =

∫
dk1dk2P (k1,k2)δ(|k1−k2|−q) , (31)

Uncor(q) =

∫
dk1dk2P (k1)P (k2)δ(|k1−k2|−q) .

(32)

The HBT radius R and the chaotic parameter λ of

the source can be extracted by fitting the calculated

two-pion correlation function with the parameterized

formula

C(q) = 1+λe−q2R2

. (33)

In Figs. 1(a), (b), and (c), the symbols • give the

calculated two-pion correlation functions with the ef-

fects of source expansion and multiple scattering, for

the partially coherent sources with χ= 1.0, 0.5, and
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0.3, respectively. The symbols M represent the two-

pion correlation functions for the case that the de-

tected pions are produced at the freeze-out configu-

ration of the source. Because the freeze-out is the

last stage of the expanding source, the corresponding

geometry of the source is the largest and the pions

produced at this stage will not be subjected to mul-

tiple scattering. The corresponding HBT radius and

chaotic parameter results for the two cases are also

shown in the figures. The HBT radii for the freeze-

out stage are larger than those corresponding results

for the case symbolized with •, because the freeze-out

geometry of the source is larger. However, it can be

seen that for each χ value the HBT chaotic parame-

ters for the two cases are equal within the statistical

errors.

Fig. 1. Two-pion correlation functions for the
partially coherent sources with (a) χ = 1.0,
(b) χ = 0.5, and (c) χ = 0.3 respectively.

For a static partially coherent source which has

the same coherent and chaotic components in density

distribution as described in Eqs. (3) and (4), the HBT

chaotic parameter λstatic (without the effects of source

expansion and multiple scattering) can be expressed

as[11, 12]

λstatic =
1+2γ

(1+γ)2
, γ=

〈Nc〉
〈Nχ〉

, (34)

where 〈Nc〉 and 〈Nχ〉 are the average pion number

emitted from the coherent and chaotic components of

the source, which are proportional to average coher-

ent and chaotic source densities respectively. From

Eqs. (3), (4), and (34), we have

λstatic =χ (2−χ ) . (35)

For χ = 1.0, 0.5, and 0.5, we have λstatic = 1.0, 0.75,

and 0.51. They are equal to the corresponding HBT

chaotic parameters presented in Fig. 1 within sta-

tistical errors. Because the extracted HBT chaotic

parameters for the expanding sources considered are

equal to the corresponding λstatic results for the static

sources with statistical errors and the HBT results

extracted from the source freeze-out configuration do

not include the effect of multiple scattering, we con-

clude that neither the source expansion nor the multi-

ple scattering may affect the HBT chaotic parameter,

although they may affect the HBT radius[7].

4 Summary and discussion

We derive the two-pion HBT correlation func-

tion for a partially coherent evolution pion-emitting

source, in which the coherent and chaotic source com-

ponents have the same density distribution, using

quantum probability amplitudes in a path-integral

formalism. We use relativistic hydrodynamics to de-

scribe the source evolution and treat the multiple

scattering of the particles in the source with the

Glauber scattering theory. As an example, we exam-

ine two-pion interferometry for a partially coherent

source of hadronic gas with a finite baryon density.

The influence of multiple scattering and source col-

lective expansion on HBT results is investigated. We

do not find observable effect of either the multiple

scattering or the source collective expansion on HBT

chaotic parameter based on our model calculations.
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In high-energy heavy-ion collisions, multiple scat-

tering is thought to be the reason that a coherent

source tends to chaotic one during its evolution. How-

ever, based on the Glauber scattering theory the in-

teractions of the test particle with the medium parti-

cles in the source are coherent scattering, which just

adds a phase shift factor to the propagation proba-

bility amplitude. As it can not change the random-

ness of the phase of the probability amplitude, the

source coherent degree will keep unchanged after the

multiple scattering. On the other hand, there may

exist incoherent scatterings in the source produced

in high-energy heavy-ion collisions, which can lead to

a chaotic source after the multiple scattering of this

kind[13]. Therefore, further studies on the particle in-

teractions in the source and their influence on HBT

results using more detailed microscopic model than

the Glauber model will be of great interest.

We thank Cheuk-Yin Wong and Qing-Hui Zhang

for helpful discussions.
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