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Abstract The strong coupling αs(s) is an important free parameter of Quantum Chromodynamics. Based

on R values measured at BES, the values of the strong running coupling constant αs(s) at 2.0—3.7GeV are

determined using the O(α3
s ) and O(α4

s ) order expressions calculated by pQCD, then αs(s) is deduced to the

Mz scale. The numerical prediction on the improvement of the uncertainty of αs(s) with the decrease of the

experimental error of R value in the future experiment is also given.
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1 Introduction

The strong coupling αs is a basic parameter in

Quantum Chromodynamics (QCD). The precise de-

termination of αs and its evolution with energy have

significant effects on all the hadronic theories and ex-

periments. QCD predicts the energy dependence of

αs and the asymptotic freedom property. But the ac-

tual value of αs cannot be predicted by QCD, it must

be determined from experiments, such as deep inelas-

tic scattering
[1]

, τ decay
[2, 3]

and e+e− annihilation
[4]

processes.

The cross section of e+e− → hadrons is often ex-

pressed as R value, σhad(s) = R •σµµ(s), where s is

the squared center-of-mass energy in e+e− annihila-

tion. The value of αs can be obtained by solving the

equation RQCD(αs) = Rexp(s) with the conventional

method
[4]

, where RQCD(αs) is the expression calcu-

lated by perturbative QCD, and Rexp is the experi-

mental R value. Fig. 1 shows the values of αs and

their uncertainties determined from experiments.

In this work, R values measured at BES
[5, 6]

be-

tween 2.0—3.7GeV are used to determine αs by both

means of solving the equation and the least squares

fitting respectively, and give its evolution to Mz scale.

Through the latter method we can obtain the dimen-

sional parameter Λ of QCD, and may predict the

value of αs(s) at any energy in the fitting region, in-

stead of only getting the separate values of αs(si) at

the experimental energy points si, like the issue in the

scheme of solving the equation. In the last section,

Fig. 1. The energy dependence of αs. The hol-

low dots with error bars are experimental re-

sults. The dash line is the experimental av-

erage, and the shadow indicates the region

within ±1σ.
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the numerical prediction on the improvement of the

uncertainty of αs(s) with the decrease of the experi-

mental error of R value is also given.

2 QCD predictions on αs(s) and R

In QCD, αs(s) actually depends on the energy

scale Q2. If the renormalized coupling αs is fixed at a

certain given scale µ2, QCD can precisely derive the

value of αs at any other energy scale Q2 through the

renormalization group equation
[7]

Q2 ∂αs(Q
2)

∂Q2
= β(αs(Q

2)). (1)

In complete 4-loop approximation and using the

Λ-parametrization, the running coupling is given by

αs(Q
2) =

1

β0L
−

β1 ln(L)

β3
0L2

+

1

β3
0L3

(

β2
1

β2
0

(ln2(L)− ln(L)−1)+
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+
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β4L4

[

β3
1

β3
0

(
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5

2
ln2 L+2lnL−

1

2

)

−

3
β1β2

β2
0

ln(L)+
β3

2β0

]

, (2)

where L = ln(Q2/Λ2
MS

), MS indicates the modified

minimal subtraction scheme, and

β0 =
33−2Nf

12π
,

β1 =
153−19Nf

24π2
,

β2 =
77139−15099Nf+325N 2

f

3456π3
,

β3 ≈
29243−6946.3Nf+405.089N 2

f +1.49931N 3
f

256π4
,

with the number of active flavor Nf .

The strong coupling αs is not a direct observable

quantity by itself, it should be determined by the ex-

perimental observable. R value can be expressed by a

perturbation series in powers of the coupling param-

eter αs(s). Up to the O(α3
s ) order, it may be written

as
[8]

:

RQCD(s) = 3
∑

f

Q2
f

[

1+

(

αs(s)

π

)

+r1

(

αs(s)

π

)2

+

r2

(

αs(s)

π

)3 ]

+O(α4
s ), (3)

where

r1 = 1.9857−0.1153Nf,

r2 = −6.6368−1.2001Nf−0.0052N 2
f −

1.2395

(

∑

f

Qf

)2

3
∑

f

Q2
f

,

with quark electric charge Qf . In this work, Nf=3

and Qf is the electric charge of u, d, s quark.

If considering the higher order QCD correction,

i.e. up to the 4-loop approximation (O(α4
s ))

[9]
,

RQCD(s) = 3
∑

f

Q2
f

[

1+

(

αs(s)

π

)

+(1.98571−

0.115295Nf)

(

αs(s)

π

)2

+(−6.63694−

1.20013Nf−0.00517836N 2
f )

(

αs(s)

π

)3

+

(

αs(s)

π

)4

rV,4
0

]

+O(α5
s ). (4)

For the coefficient of

(

αs(s)

π

)4

, it can be further de-

composed as a polynomial in Nf , namely

rV,4
0 = rV,4

0,0 +rV,4
0,1 Nf +rV,4

0,2 N 2
f +rV,4

0,3 N 3
f , (5)

with
[10]

rV,4
0,0 =−186, rV,4

0,1 = 21.3,

rV,4
0,2 =−0.797, rV,4

0,3 = 2.15×10−2.

In the above calculations, the massless approximation

for the u, d and s quarks are adopted.

3 The determination of αs(s)

The energy range 2.0—3.7GeV belongs to the con-

tinuous region (except for the narrow resonances J/ψ

and ψ′), and it is below the open charm threshold.

The interactive energy is far larger than the mass of

the active quarks (u, d and s), so the prediction of the

perturbative QCD is reliable in this energy region. In

the following, two methods are used to determine αs

from the measured R values, one is to solve the equa-

tion, and the other is to adopt the method of least

squares. In QCD, the energy dependence of the run-

ning αs is a smooth curve, so using the least squares

fitting guarantees the consistency and smoothness of
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the energy dependence of αs, and avoids the discrep-

ancy of the value of αs brought by the experimental

errors of R value in the method of solving equation.

It is noticed that QCD indicates the strict restric-

tion on the value of RQCD. Fig. 2 shows the varia-

tion of RQCD with αs varying from 0.0 to 1.0. It is

found that the maximum RQCD predicted by QCD

theory is 2.385 for 3-loop approximation, and 2.1985

for 4-loop approximation. Therefore, some experi-

mental values Rexp between 2.0—3.7GeV measured

with BEPC/BES and other groups surpass the upper

limit permitted by QCD, hence only the R values at

four energy points
√

s=2.8, 2.9, 3.0 and 3.7GeV are

used in the method of solving equation, and the R

values at eleven energy points
√

s=2.0, 2.2, 2.4, 2.5,

2.6, 2.7, 2.8, 2.9, 3.0, 3.7 and 3.73GeV are adopted in

the least squares fitting.

Fig. 2. The variation of theoretical RQCD with

αs, the left one is for Eq. (3), and the right

one is for Eq. (4).

Fig. 3. The error calculation of αs(5GeV).

In the method of solving the algebraic equation,

it is supposed that the theoretical RQCD(s) is equal

to the experimental value within one standard devi-

ation: RQCD = Rexp ±∆Rexp, then αs(s)±∆αs(s) at

energy s is obtained by solving Eq. (3) or Eq. (4).

The value of αs(s) at other energy scale (usually to

the standard reference scale MZ) can be derived from

Eq. (2)
[11]

. The error calculation of αs(s) at each en-

ergy point is direct: the experimental values are taken

as Rex+∆Rexp and Rex−∆Rexp respectively, and α +∆i

s−∆′

i

are obtained, in which ∆i and ∆′

i are unsymmetrical

errors. All αs(si) may evolve to 5GeV using Eq. (2).

And for the calculation of the αs(5GeV), the area

shown in Fig. 3 is used. The RQCD curve and the two

vertical lines cross αs axis at αsi+∆i and αsi
−∆′

i con-

struct a region with area Si. The weighted average of

αs(5GeV) is

αs(5GeV) =

∑

i

αs(si)

Si

∑

i

1

Si

, (6)

where the area is

Si =

∫αs(si)+∆i

αs(si)−∆′

i

R(αs)dαs . (7)

The upper and the lower errors ∆up and ∆down of

αs(5GeV) are calculated respectively through

∆up =

√

√

√

√

√

1
∑

i

1

∆2
i

, ∆down =

√

√

√

√

√

1
∑

i

1

∆
′2
i

. (8)

Evolving αs(5GeV) up to MZ, we have

αs(Mz) = 0.129+0.014
−0.021 , (9)

which agrees with the world average value within

error
[12]

, αs(Mz) = 0.1176± 0.002. The results are

summarized in Table 1 and Table 2.

The second method is the least squares fitting.

The object function of fitting is

χ2 =
∑

i

(

f •Rexp(si)−RQCD(si)
)2

(

f •∆R̃(i)
exp

)2 +
(f −1)2

σ2
f

, (10)

Table 1. The values of αs determined by R values measured with BES at 2.8, 2.9, 3.0 and 3.7GeV. The values of

αs evolving to 5GeV are also shown. The first term is statistical error, and the second term is systematical

error.
√

s/GeV Rexp αs(s) αs/5GeV

2.80 2.17±0.06±0.14 0.251+0.091+0.233
−0.087−0.215 0.207+0.056+0.126

−0.063−0.162

2.90 2.22±0.07±0.13 0.326+0.118+0.249
−0.105−0.192 0.257+0.064+0.121

−0.069−0.135

3.00 2.21±0.05±0.11 0.311+0.080+0.215
−0.075−0.162 0.251+0.047+0.114

−0.050−0.116

3.70 2.23±0.08±0.08 0.342+0.141+0.141
−0.121−0.121 0.296+0.095+0.095

−0.098−0.094
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Table 2. The evolution of αs from 5GeV to Mz scale.
√

s/GeV αs/5GeV area S αs/5GeV αs(Mz)

2.80 0.207+0.138
−0.174 0.6628

2.90 0.257+0.137
−0.151 0.6245 0.254+0.066

−0.071 0.129+0.014
−0.021

3.00 0.251+0.123
−0.127 0.5423

3.70 0.296+0.135
−0.133 0.5888

where Rexp(si) and ∆R̃(i)
exp are the R value measured

at the energy si and its error (not includes the com-

mon error) respectively, RQCD(si) is the correspond-

ing theoretical expressions in Eq. (3) or Eq. (4); f is

the scale factor corresponding to the influence of the

common error σf , and the sum runs over the mea-

sured energy points included in the fitting. The fitted

parameters are Λ and f . The dimensional parameter

Λ
[13]

is directly obtained through fit, and αs(s) is got-

ten with Eq. (2). The fitted results are

αs(Mz) = 0.141+0.020
−0.025, ΛMS = 0.79±0.48GeV, (11)

for 3-loop, and

αs(Mz) = 0.131+0.011
−0.014, ΛMS = 0.58±0.25GeV, (12)

for 4-loop approximations respectively, see Fig. 4

and Fig. 5. The fit curve shown in Fig. 5 based on

4-loop approximation is constrained by the model

predicted maximum RQCD value 2.1985. The theo-

retical error may be estimated by comparing the dif-

ference between the results of 3-loop and 4-loop ap-

proximations. Therefore, the result may be reported

as αs(Mz)=0.141+0.020
−0.025 ±0.010, the second term rep-

resents the theoretical uncertainty.

Fig. 4. The fit results for 3-loop approximation,

dots with error bars are the experimental data.

In the fitting, χ2/nd.o.f=3.03/9.

Fig. 5. The fit results for 4-loop approximation,

dots with error bars are the experimental data.

In the fitting, χ2/nd.o.f=4.23/9.

4 Determination of αs(s) in the future

To measure R value with smaller error at the fu-

Table 3. The improvement of the uncertainty of αs(s) with the decrease of the experimental error of R value.

c
c

cc

R’erroraaaaaaa

α
s error

Ecm/GeV

3.0% 2.5% 2.0% 1.5% 1.0%

Up(%) Dw(%) Up(%) Dw(%) Up(%) Dw(%) Up(%) Dw(%) Up(%) Dw(%)

2.00 37.7 35.4 31.1 29.6 24.7 23.7 18.4 17.8 12.2 11.9

2.10 38.1 35.9 31.4 29.9 25.0 24.0 18.6 18.1 12.3 12.1

2.20 38.4 36.3 31.8 30.3 25.3 24.3 18.8 18.3 12.5 12.2

2.30 38.8 36.8 32.0 30.7 25.5 24.6 19.0 18.5 12.6 12.4

2.40 39.2 37.2 32.4 31.0 25.8 24.9 19.2 18.7 12.8 12.5

2.50 39.6 37.6 32.8 31.4 26.0 25.2 19.4 18.9 12.9 12.6

2.60 40.0 38.1 33.0 31.8 26.3 25.4 19.6 19.1 13.0 12.7

2.70 40.2 38.5 33.3 32.1 26.5 25.8 19.8 19.3 13.1 12.9

2.80 40.6 38.9 33.6 32.4 26.7 26.0 20.0 19.5 13.2 13.0

2.90 41.0 39.3 33.9 32.7 27.0 26.2 20.2 19.7 13.3 13.2

3.00 41.4 39.7 34.3 33.1 27.3 26.5 20.4 19.9 13.5 13.3

3.10 41.6 40.1 34.4 33.4 27.4 26.7 20.4 20.1 13.5 13.4

3.20 42.0 40.4 34.8 33.7 27.7 27.0 20.7 20.2 13.7 13.5

3.30 42.3 40.8 35.0 34.0 27.8 27.2 20.8 20.4 13.8 13.7

3.40 42.6 41.1 35.3 34.2 28.1 27.4 21.0 20.6 14.0 13.7

3.50 42.9 41.5 35.6 34.6 28.3 27.6 21.1 20.8 14.1 13.8

3.60 43.1 41.8 35.8 34.8 28.3 27.9 21.3 20.9 14.1 14.0

3.70 43.4 42.1 36.0 35.1 28.7 28.1 21.4 21.0 14.2 14.1
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ture BEPC//BES0 is one of the important exper-

imental subjects, which will decrease the uncertainty

of αs. Using the similar method, the numerical pre-

dictions on the improvement of the uncertainty of

αs(s) with the decrease of the experimental error of

R value are given in Table 3. It shows that the un-

certainty of αs is about 12—15 times larger than the

error of R value, so to determine αs with R value is

not an economic way.

We would like to thank Zheng Zhipeng for his in-

struction and support, and Zhu Yongsheng for his

suggestions.
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