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Abstract Two renormalization approaches: the analytic continuation approach and the subtraction approach,
are used to obtain the infrared behavior of gluon and ghost propagators in the coupled gluon and ghost Dyson-
Schwinger equations, where the three-gluon and gluon-ghost vertices are taken to be bare. The results show

that the two renormalization approaches give the same results in the infrared analysis of propagators.
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1 Introduction

Quantum chromodynamics (QCD) is believed to
be the quantum field theory of the strong interac-
tions of quarks and gluons. In contrast to Abelian
gauge theories like quantum electrodynamics (QED),
the non-Abelian nature of the gauge symmetry of
QCD not only induces interactions between quarks
and gluons but also among gluons themselves. This
last effect is expected to be responsible for the phe-
nomenon of confinement.

Confinement and the dynamical chiral symme-
try breaking are the two genuine effects of non-
perturbative QCD. Although there is a lot of work
devoted to them, it is still far from satisfactory. Re-
cently the Dyson-Schwinger (DS) approach, equa-
tions of motion for correlation functions of the fields,
has been employed to study the confinement and the
dynamical chiral symmetry breakingllfg]. The DS
approach has been proven to be successful in devel-

oping a hadron phenomenology which interpolates
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smoothly between the infrared (non-perturbative)
and the ultraviolet (perturbative) regime! . Cer-
tainly a great step forward in understanding QCD
would be the detailed knowledge of the basic cor-
relation functions, the propagators. Information on
confinement is encoded in these two-point functions.
Furthermore the dynamical chiral symmetry break-
ing can be studied directly in the DS equation (DSE)
for the quark propagator, which is the gap equation
of QCD. Besides being related to the fundamentals of
QCD, the quark and gluon propagators are vital in-
gredients for phenomenological models describing low

4]

and medium energy hadron physics Bound state

calculations based on the Bethe-Salpeter equations
for mesons or the Faddeev equations for baryons[sfg},
might one day be capable to bridge the gap between
the fundamental theory QCD and phenomenology.
In this paper, we will investigate the behavior of
gluon and ghost propagators in the small momentum
regime of QCD using their DSEs. It has been shown

that the gluon propagator or ghost propagator is sin-
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gular in the infrared limit! I, The singularity will
complicate the renormalization, which is necessary to
extract the needed information. So far two renor-
malization prescriptions: the analytic continuation
approach[lz] and the subtraction approach[g]7 were
used in the analysis of the infrared behavior of gluon
and ghost propagators. Different results are obtained
in different work. The present work is to compare
the two different renormalization approaches in the
infrared regime for the same DSEs with same approx-
imations and to see whether the two approaches give

us same results or not.

2 The DSEs for gluon and ghost pro-

pagators

The derivation of DSEs for ghost and gluon prop-
agators has been given in Ref. [11]. Parameterizing
the ghost propagator Dg and the gluon propagator
D, by their respective renormalization functions G
and Z,

(1)

kuk,\ Z(k?
D)= (3~ 252 ) 22

in the Landau gauge, with the bare three-gluon and
gluon-ghost vertices, the DSEs for the ghost and

gluon propagators lead to
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In the above equations, k, p and ¢ denote the mo-
menta of the propagators.

Refs. [11-—13] have already revealed that in the
infrared region the gluon renormalization function is
infrared vanishing while the ghost renormalization
function is infrared singular. For the infrared proper-
ties of the gluon and ghost propagators, it has been
shown that the gluon propagator vanishes for the
small momenta while the ghost propagator is infrared
enhanced. Here we just do the infrared analysis, so
the second term in Eq. (3) can be ignored. The equa-

tions to be studied become:

B 2 A2 . 49
G*1<k2>:zg—ij dq2q2G(q2>fdosm4 20%),
Us 0 p
(5)

2 rA d 2
Z7(k?) = zg+g—J iG(qQ)J/"desian
0 0

M(k?,¢*,p*)G(p°). (6)

In the infrared regime, it was assumed that the

ghost and gluon renormalization functions obeyed the

power law!' 1

Z(z) = Ax®", (7)
G(z) = Bx™". ()

With these simplifications, Egs. (5) and (6) reduce to
(let z=k*y=q¢* z=p*=x+y—2,/Tycosh)

at_ 5 _6MB r dy J’"d9sin49 o)
B 3 T ynfl o 227211 ’
T2 oAB? [ dy (" dfsin’6
=75+ J —Jm M(z,y,z).
A 3 T, wy*), =z ( )
(10)

In Ref. [13], a further simplification, the y-max
approximation, was introduced. In the y-max ap-

proximation, the x was obtained as:

Kk~ 0.77. (11)
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And the running coupling, which is given by
a(z) =4m\Z(2)G?*(z), (12)
has a non-trivial infrared fixed point
a(0)~11.4702. (13)

Generally, the integrals in Egs. (9) and (10) are di-
vergent because of the singularity at y =0. The renor-
malization procedure should be employed to evaluate

the integrals.

3 Two renormalization approaches

3.1 The analytic continuation approach

In Ref. [12], the analytic continuation approach
was developed. The integral in Eq. (9) is conver-
gent if Re k < 0, whereas a subtraction is necessary
if 0 < k < 1. By identifying Z; with this subtraction
constant, one ensures that G(z) is defined by analytic
continuation in k beyond Re x =0. This continuation
is made explicit in terms of the generalized hyperge-
ometric function.

By using the generalized hypergeometric function,
the Eq. (9) can be evaluated and the result is shown
below

—2k,2—k;3,3—K;1)—

1
—3Fy(—2k+2,-2k,—£k;3,1—k;1)|. (14)
K

Similarly, Eq. (10) becomes
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K

Then the result of kK — 1 and «(0) = 4.19 is ob-
tained. The behavior of the ghost and gluon prop-
agators in the infrared regime is the same as that
in y-max approximation mentioned above: the gluon
renormalization function is infrared vanishing while
the ghost renormalization function is infrared singu-
lar. The running coupling has an infrared fixed point.
But the values of x and «(0) are different from y-max
approximation. So although y-max approximation is
a good approximation for the ultraviolet analysis, it
is not a good one for the infrared analysis.

Recently, a lot of work has been done in this
subject and different results have been obtained in
different work. Within the framework of the bare
three-gluon and gluon-ghost vertices, Refs. [14—17]
did the infrared renormalization using the analytic
continuation approach with the help of I'-functions.
In their work, the contraction was performed using
an arbitrary &-parameter tensor, and the infrared
analysis yielded the bulk of solutions between x=0.5
and k=0.6 for different £ when using a non-Brown-
Pennington tensor!'¥. For k=0.595, the infrared fixed
point is a(0)=2.97. In Refs. [19,20], considering the
multiplicative renormalization, a two-loop truncation
of the ghost-gluon DSEs was performed, and with dif-
ferent groups of parameters, they obtained the results
between £=0.17 and xk=0.53. For k=0.5, the infrared
fixed point is «(0)=>5.24. The infrared behavior of the
gluon and ghost propagators in the work mentioned
above is consistent, although the values of «(0) and

k are different.

3.2 The subtraction approach

A2
In this approach, the integration region J in
0

A2
Eq. (9) is separated into two parts: J’l and J . For
0 T

the integration over | , we change the integral vari-
0
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able: From Egs. (19) and (21), we obtain
y=at, dy=uzdt, 272Dy (Kk,x) — 872 Dy(k, 5)
C(KJ)—’_ 11772'{ _87211 =
z=x+y—2/Tycosh =x(1+t—2vtcosh), (16) B "B
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A2
and for the integration over J' ,
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Inserting Egs. (16) and (17) into Eq. (9), we obtain:
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The renormalization constant Zs; can be eliminated

by subtracting the above equation at x = s, then we

get
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The same procedure is applied to Eq. (10), the result
is:
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T —s*
The Lh.s of the above equation is corresponding to the
gluon propagator, while the r.h.s is corresponding to
the ghost propagator. In the subtraction approach
here, we do both the radial and angular integrations
numerically. Choosing different sets of z and s, we

obtain the results, which are shown in Fig.1.

A\ ghost, x=0.5, s=0.2
\\ rrrrrrr ghost, x=1 X 107* s£2X107*

\. — ghost, x,s—0
“~— gluon, x,s—0

1/a(0)
(=]

Fig. 1. The numerical result of «.

From the numerical study, we find that the lLh.s
of Eq. (23
of z and s, while the r.h.s. of Eq. (23) (ghost part)

depends on the choices of x and s.

) (gluon part) is independent of the choices

However, from
Fig. 1, it is clear that when both x and s go to zero,
k—1 and «(0) = 4.19 is obtained.

4 Summary

Taking bare three-point vertex functions in the
truncated Dyson-Schwinger equations of gluon and
ghost propagators, two renormalization approaches:
analytic continuation approach and subtraction ap-
proach, are employed to investigate the infrared be-
havior of gluon and ghost propagators. The calcula-
tions show that the two renormalization approaches
mentioned above give the same results in the in-
frared analysis. This is an important result, be-
cause we do not want to always take the bare ver-
tices assumption. When the other information (i.e.

the Slavnov-Taylor identities!"!

, transverse Ward-
Takahashi identitiesm’m]) can be used to determine
the three-point vertices, the analytic continuation ap-

proach is not always possible in the infrared analysis,
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while the subtraction approach can work. In addi-

tion, the subtraction approach works not only in the
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