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Abstract We examine the two-pion interferometry for the expanding sources of spherical quark-gluon plasma evolution. The quark-

gluon plasma evolution is described by relativistic hydrodynamics with the equation of state of entropy density. The two-pion Hanbury-

Brown-Twiss (HBT) correlation functions are calculated using quantum probability amplitudes in a path-integral formalism. We find

the spatial parameter extracted by the two-pion interferometry is sensitive to the phase-space distribution of the pion-emitting source .

The expanding velocity of the source leads to a smaller HBT radius and changes the relationship between the HBT radius and the

freeze-out temperature.
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Two-pion Hanbury-Brown-Twiss (HBT) interferometry is
a useful tool to measure the size of the particle-emitting
source in high energy heavy ion collisions'" . At the energies
of RHIC, or even SPS and AGS, a new phase of nuclear mat-
ter, the quark-gluon plasma ( QGP), is expected to be
formed-2. The highest priority in ultrarelativistic heavy ion
experiments is the detection of the new phase, QGP, and the
study of its properties. In this paper, we examine the two-pi-
on interferometry for the expanding sources which come from
spherical quark-gluon plasma evolution. We follow Rischke
and Gyulassy:31 and use the equation of state of entropy den-
sity suggested by QCD lattice data-*) to describe the quark-
gluon plasma. Once the equation of state and the initial con-
dition are known, the solution of the expansion and
hadronization processes can be obtained by relativistic hydro-
dynamics without complicated microscopic details’® . The
two-pion correlation function, then, can be calculated by us-
ing quantum probability amplitudes in a path-integral forma-
lism, after knowing the dynamical solution'®®7 .

At zero net baryon density, the entropy density as a

function of temperature can be expressed ast®

Received 23 June 2004

i( T)= [%] 3(1 + ZZ; ZHtanh[ TA_TT"

J.

H
where dg and dy are the degrees of freedom in the quark-glu-

on plasma phase and the hadronic phase, T,~160MeV is the

transition temperature, s, = const. X % (do+ dyw) T is the
entropy density at T,, and AT (between O and 0.17,) is the

3. From Eq. (1) one can get the

width of the transition-
pressure p, energy density €, and the velocity of sound of

the system with the following equations as in Ref.[3],

p:jOIdT’s(T'),E = Ts — p, cé:%g. 2)

In this paper, we take dQ =37, dy=3, T.=160MeV as in

Ref. [3], and consider the three kinds of systems of AT =0

(an exact first-oder transition), AT=0.1 T,, and the ideal
plon gas with the equation of state p = €/3.

The energy momentum tensor of a thermalized fluid cell

in the center-of-mass frame of the source is>'%)

™ (x) =[e(x)+ p(x) Ju(x)uw(x) - p(x)g™, (3)
where x is the space-time coordinate, u" = y(1,v) is the
4-velocity of the cell, and ¢ is the metric tensor. From the

local conservation of energy and momentum, one can get the
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1
equations for spherical geometry ast!
IE+d[(E+p)v]=-F, (4)
IM+3 (Mv+p)= -G, (5)
where E=T®, M= T",
F=2"(E+p), 6=2u. (6)
We assume the initial conditions as->’
€0 r< 7o 0, r< 7o,
e(0,r) = { v(0,r) = { (7)
s T >Tps I, r>r,

where g is the initial energy density, and ry is the initial ra-

dius of the system. In our calculations, we take gy =

1.875T,s,-¥, which is close to the energy density e =
%(4(10/@- ) Tys/(do/dy + 1) = 1.8125 Tys, at the

phase boundary between mixed phase and QGP for AT =0,
and rq=6.0 fm. Using the HLLE scheme'® and with the re-
lation of p = p(e) obtained from Egs. (1) and (2), one
can get the solutions of the hydrodynamical equations for F =
G =0, then, obtain the solutions for Egs. (4) and (5) by

31 The grid spac-

using the Sod’s operator splitting method!
ing for the HLLE scheme is taken as Ax = 0.01lry, and the
time step width for the HLLE scheme and Sod’s method cor-
rector step is Az = 0.99Ax) . Figs.1 (1), (2), and (3)

show the temperature profiles for the evolution systems of AT

=0, AT=0.1 T,, and the ideal pion gas. Figs.1 (1’),
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Fig.1. (1,1),(2,2'), and (3,3') are the temperature
and velocity profiles for the systems of AT =0 (1, =4nAry),
AT=0.1T,(t,=1.5nAry), and the ideal pion gas (t, =
0.5nAry) , respectively, where n=0,1,2,3,4,5,1 =0.99.
(1M, (2, and (3") show the isotherms for the three systems.

(27), and (3’) show the velocity profiles, and (1”), (27),
and (3”) show the isotherms for the three systems, respec-
tively.

The two-particle Bose-Finstein correlation function is
defined as the ratio of the two-particle momentum distribution
P(ky, k;) to the product of the single-particle momentum
distribution P{k,;) P{(k,). Using quantum probability am-
plitudes in a path-integral formalism, P(k;) (i=1,2) and

P(ky,k,) for an expanding source can be expressed as o8

P(R) = [dxe ™00 () A2(k(x) ), (8)

P( kl , k2) — J‘d4x1d4xze—2lrna’s(xl)e—Zlma’s(xz) X

{0(961)(0(962” D(kyky xlxzaxdlxdz)‘zs (9)

~2m8:(%) s the absorption factor due to multiple scat-

where e

ten'ngiks] s p( %) is the pion-source density, A{x{(%),x) is

the magnitude of the amplitude for producing a pion with mo-
mentum k at x, and

D(kiuy

1

2

exp[ - ij H"Cl(x’) cdy’ - ik e (wg - xn)] X

X%y 7 XXy =

{4e (), 2) Al (x) ) x

exp[ - IJ mlCz(x’) . dx' - lkz * (xdz - xﬂ)] +

2

A(Kl(xz),xz)A(Kz(xl)’xl) X

exp[ - iJ ;le(x,) - dx’ - ik - (xdl - x'fz)] X

exp[ - ij Tiep(a) - da’ = ik (xg - xﬂ)] ,

(10)
is the wave function for two-pions produced at x; and x, with
momenta x;(x;) and x,(x,), and detected at x4 or xgy
with momenta k&, and k,, respectively. In Eq.(10), xq and
xp are the freeze-out points corresponding to the pions 1 and
2 produced at x; and x, and detected at x4 and xy, respec-
tively. xpy and xp are the freeze-out points corresponding to
the pions 1 and 2 produced at x; and x, and detected at x gy
and x4, respectively. As we consider mainly two pions
whose momenta are nearly parallel, we approximately have
xp = xg and xp = xﬂieﬁs] . From Eqgs. (8)—(10) the cor-
relation function C(k;,ky) = P(ky, ky)/P(ky) P(k,) can

be written as® %

C(kl’kz) =1+

. . 2
‘Jd4xe'(kl'k2)"‘+'¢ﬂ<x’klkz)peff(x;klkz) , (11)
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where pg is the effective density "5
—2tmp(x) /g » SR Ao I XT:ofch L ildeal‘gaS—:
peff(x;klkz) _ € \/fllrlll(lclsx)f;rlll(/c27x) (12) 18 [ (N @ b 3)

v P(ky) P(ky) ’

fui(resx) = p(2) A2 (se(x), %), (13)
is the phase-space distribution of the pion-emitting source,
which is proportional to the Bose-Einstein distribution in the

local frame, and

¢c(x, klkz) =

() = ()] = ey = o) -

X

From Eq.(12) it can be seen that the effective density is re-
lated to the phase-space distribution of the pion production
source, modified by an absorption factor arising from multiple
scattering. The two extreme cases of the absorption of multi-
ple scattering are the pions without absorption after production
and with a strong absorption which leads to a freeze-out emis-
sion'®) . In this paper we calculate the correlation functions
for the three kinds of evolution sources, AT = 0, AT =
0.1 T,, and ideal pion gas, and consider only the two ex-
treme cases of the absorption of multiple scattering. We use
the relative momentum and energy of the two pions, ¢ =
k) — k,| and go= | E, (k) — E;(ky) |, as variables, the
two-dimension correlation function C(gq,qy) can be con-
structed from P(k, k,) and P(k;) P(k,) by summing over
k; and k, for each (¢, qy) bin. As the differences of the
time scales of the three kinds of sources are large, we take
small ¢y limitations when we study the spatial sizes of the
three kinds of sources in order to reduce the effect of lifetime.
We further obtain the one-dimension correlation function
C(q) by integrating C(gq,qy) over go within the limita-
tions, which is 10MeV for the source of AT =0 and 20MeV
for the other sources.

Figs.2(1, 2, 3) and (1’, 27, 3’) show the correlation
function C(¢) for the three kinds of sources for the freeze-
out temperature Ty =0.7T, and 0.9T,, respectively. The
symbols of bullets and circles are for the two cases of without
absorption and with the freeze-out emission. The solid and
dashed lines are the corresponding fitted curves with the
parametrized correlation function as

C(q)=1+2e 7%, (14)
Fig.3 gives the fitted results R and A, where the symbols of
bullets and circles are for the two cases of without absorption
and with the freeze-out emission, respectively. It can be seen
that the HBT radius for the freeze-out emission case is sub-

stantially greater than that for the corresponding case without

7,=0.77

C(g)
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Fig.2.  The two-pion correlation functions for the sources of AT

=0(land 1), AT=0.1T,(2 and2'), and ideal pion gas (3

and 3') for the freeze-out temperatures T;=0.77T, and 0.97,.

The symbols of bullets and circles are for the cases of without ab-

sorption and with freeze-out emission, respectively.
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Fig.3.  Two-pion HBT results for the sources of AT =0,

AT =0.1T,, and ideal pion gas. The symbols of bullets and
circles are for the cases of without absorption and with the freeze-
out emission. The symbols of solid triangles and open triangles
are the results for the cases of without absorption and with the

freeze-out emission, corresponding to the “static” sources.

absorption. The HBT radius is sensitive to the phase-space
distributions of the three kinds of sources. However, the HBT
radius does not monotonously increase with decreasing the
freeze-out temperature ( refer to Figs. 1 (1”7), (2”), and
(3")), because the average expanding velocities of the
sources are different for different freeze-out temperatures. In
order to investigate the effect of expanding velocity on HBT
radius, we examine the two-pion interferometry for the corre-
sponding “static” sources, which have the same density dis-

tributions as the expanding sources but the expanding veloci-
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ties of the sources are forced to be zero. In Fig.3, the sym-
bols of solid triangles and open triangles are the results for the
“static” sources, for the cases of without absorption and with
the freeze-out emission, respectively. It can be seen that the
HBT radius of the “static” source increases monotonously
with decreasing the freeze-out temperature both for the cases
of without absorption and with the freeze-out emission. The
expanding velocity of the source leads to a smaller HBT radius
than that for the corresponding “static” source.

In summary, we examine the two-pion interferometry for
the hydrodynamical evolution sources of spherical quark-gluon

plasma, using quantum probability amplitudes in a path-inte-

gral formalism. The HBT radius is sensitive to the phase-
space distribution of the pion-emitting source. The expanding
velocity of the source leads to a smaller HBT radius. The dif-
ferent expanding velocities of the sources for different freeze-
out temperatures lead to a change of the relationship between
the HBT radius and the freeze-out temperature. We only con-
sidered two extreme cases of the absorption of multiple scat-
tering in this paper. A more detailed investigation taking into
consideration the effect of multiple scattering properly will be
of great interest and possibly pave a way to understand the
HBT puzzle in RHIC physics.
We thank Cheuk-Yin Wong for valuable discussions .
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