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Abstract The onset of the most powerful neutrino emission candidate in the cooling of neutron stars,

direct URCA process, requires a high threshold proton fraction. The proton fraction in neutron stars relies

on the isospin dependent part of nuclear force, which can be constrained by the measurement of the neu-

tron skin thickness in heavy nuclei such as 208Pb . Adding new isospin dependent correction terms to the

effective interactions PK1, NL3, S271 and Z271, the correlation between the proton fraction and neutron

skin thickness in 208Pb is studied. For a neutron star with fixed mass, the central proton fraction increases

with increasing predicted values of neutron skin thickness in 208Pb .
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1 Introduction

The most powerful neutrino emission candidate

in the cooling of neutron stars is the nucleon di-

rect URCA (D-URCA) process[1]: n→ p+ e− + νe ,

p+ e− → n+ νe , which emits neutrinos in the inner

cores of neutron stars. The well known triangle in-

equality for momentum conservation requires a high

proton fraction (11.1%—14.8%) for the onset of the

direct URCA process[1].

Current X-ray observations[2] of middle-aged neu-

tron stars indicate low surface temperatures, which

imply a rapid cooling mechanism such as the D-

URCA process. Unfortunately, astronomic observa-

tions alone may not be able to establish the occurrence

of the D-URCA process. On the theoretical side, the

determination of the proton fraction in neutron-rich

beta equilibrium matter is problematic mainly due to

the poor knowledge of the isospin dependence of nu-

clear forces. One rather sensitive measure for isospin

effects in normal nuclei is the neutron skin thickness

in heavy nuclei such as 208Pb . Although the pro-

ton radius of 208Pb has been accurately determined

by electron scattering experiments, the extraction of

the neutron radius from hadron-induced experiments

is model-dependent and as such suffers from reaction

mechanism uncertainties. What is more disconcert-

ing is the large variation in the predicted values of

neutron skin thickness S of 208Pb , with S =0.1—

0.2fm for nonrelativistic Skyrme models[3], on one

hand, and S =0.2—0.3fm for relativistic mean field

(RMF) models[3] on the other hand. This dismal sit-

uation has prompted an experiment at Jefferson Lab-

oratory to measure the neutron radius in 208Pb accu-

rately and model independently via parity violating

electron scattering to an unprecedented accuracy of

1%(±0.05 fm)[4].

Recently we studied[5] the sensitivity of the neu-

tron skin thickness in 208Pb to the addition of isospin-

dependent higher order sigma-rho-nucleon couplings

to various RMF models (PK1, NL3, S271, Z271).

In this paper we extend the latter investigation to
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study the correlation between neutron skin thickness

in 208Pb , S , and proton fraction in neutron rich mat-

ter. In particular, we determine the threshold density

for the onset of D-URCA process in neutron stars.

2 Formalism

The details of RMF theory and its application

in nuclear physics are described in Ref. [6—8]. The

new higher order isospin-dependent correction terms

are respectively, L1 = −Γ1ψgργ
µ(gσσ/m)τ · ρµψ ,

L2 = −Γ2ψgργ
µ(gσσ/m)2τ · ρµψ and we also con-

sider the term introduced in Ref. [9]: LHP = 4Λνg
2
ρρµ·

ρµg2
ωωµωµ . The details can be found in Ref. [5].

3 Results and discussion

Details for the extraction of the coupling con-

stants, Γ1 , Γ2 , and Λv , can be found in Ref. [5].

For all the effective interactions PK1, NL3, S271 and

Z271, we fix the symmetry energy at kf = 1.15 fm−1

( ρ = 0.10 fm−3 ) for nuclear matter and the binding

energy per nucleon in 208Pb in the range |E/A −
(E/A)exp| < 0.005 MeV, where (E/A)exp = −7.868

MeV.

The chemical potentials, µ , for neutrons, protons,

electrons, and muons in beta equilibrium matter sat-

isfy µp = µn − µe , and charge neutrality implies that

ρp = ρµ + ρe or equivalently, in terms of Fermi mo-

menta, (kp
F)3 = (kµ

F)3 + (ke
F)3 . For a given total

baryon density ρ , the proton fraction is YP = ρP/ρ .

The momentum conservation in the D-URCA process

implies that the Fermi momenta of neutrons, pro-

tons, and electrons must satisfy the following rela-

tion kn
F 6 kp

F +ke
F

[1]. The D-URCA threshold density

ρURCA is defined as the density at which kn
F = kp

F+ke
F

satisfies.

As an example, the values of Λv and Γ1 with

Γ2 = 0 for PK1[10] are extracted and the proton frac-

tion in beta equilibrium matter is shown in Fig. 1.

In Fig. 2 the direct URCA threshold density

ρUCRA is shown as a function of neutron skin thick-

ness S of 208Pb for PK1, NL3[11], S271 and Z271[7]

with the new terms. It is seen that ρURCA decreases

with S . The effective interactions which give large

S produce low D-URCA threshold density. Further-

more, ρURCA changes more rapidly for S271 and Z271

than for NL3 and PK1.
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Fig. 1. The proton fraction, Yp , in beta equilibrium

matter is shown as a function of the baryon den-

sity, ρ , for different combinations of Λv and Γ1 ,

with Γ2 = 0 , for the PK1 effective interaction. The

corresponding values of the neutron skin thickness,

S (in fm), are indicated in square brackets.
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Fig. 2. D-URCA threshold density, ρURCA (in fm−3) ,

versus the neutron skin thickness, S (in fm), of
208Pb for the PK1, NL3, S271, and Z271 effective

interactions for various combinations of Λv and

Γ1 , with Γ2 = 0 , or Λv and Γ2 , with Γ1 = 0 .

The structure of spherical neutron star in hydro-

static equilibrium is solely determined by the equa-

tions of state of neutron-rich matter in beta equilib-

rium. Having specified the equation of state, we de-

termine the mass of neutron stars that may cool via

the D-URCA process by integrating the Opperheimer-

Volkff equations[12].

In Fig. 3, the threshold neutron star, MURCA ,

whose central density equals to the corresponding D-

URCA threshold density in Fig. 2, is displayed as a

function of neutron skin thickness S for all effective

interactions. The parameter sets with large neutron

skin thicknesses produce small threshold neutron star

masses with a model dependency as shown in Fig. 2.
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If S is less than 0.2fm, as predicted by nonrelativis-

tic models, the D-URCA is forbidden in neutron star

with 1.4 M¯ mass. It may happen in neutron star

with large mass, as shown in Fig. 3 for PK1 and NL3.
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Fig. 3. D-URCA threshold neutron star mass (in so-

lar mass units) versus the predicted neutron skin

thickness, S (in fm), in 208Pb .

4 Summary

Using the effective interactions PK1, NL3, S271

and Z271, and adding new isospin-dependent terms,

the feasibility of the D-URCA process was studied

by correlating the proton fractions in beta equilib-

rium matter to the neutron skin S of 208Pb . D-

URCA threshold density ρURCA is found to change

more rapidly for S271 and Z271 than for NL3 and

PK1. If S < 0.20 fm, the proton fractions only allow

the direct URCA cooling of neutron stars with large

mass. If S > 0.26 fm, the direct URCA process is

allowed by all models to cool down a 1.4M¯ neutron

star.
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摘要 D-URCA过程是中子星发射中微子冷却中最快的机制. 中子星发生D-URCA过程需要较高的

质子分数比, 该比值取决于核力的同位旋依赖性, 而核力的同位旋依赖性与重核(如 208Pb )的中子皮

厚度相关. 为此, 基于相对论平均场理论, 采用PK1，NL3，S271，Z271有效相互作用, 在拉氏量中引

入同位旋相关的高阶修正项, 本文研究了中子星的质子分数比以及D-URCA过程与 208Pb的中子皮厚

度之间的关系.
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