ρ-ω Interference in J/ψ-Decays and ρ→ $\pi^+\pi^-\pi^0$ Decay*

LIU Fang^{1,2;1)} LI Jin² HUANG Yi-Bin¹ YAN Mu-Lin^{1,2)}

1(Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 230026, China)
2(Institute of High Energy Physics, CAS, Beijing 100039, China)

Abstract We study ρ - ω interference by analyzing $J/\psi \to \pi^+ \pi^- \pi^0 \pi^0$. PDG-2002 data on J/ψ decays into PP and PV (P denotes pseudoscalar mesons; V, vector mesons) are used to fit a generic model which describes the J/ψ decays. From the fits, we obtain anomalously large branching ratio $Br(\rho^0 \to \pi^+ \pi^- \pi^0) \approx 10^{-3} - 10^{-2}$. A theoretical analysis for it is also provided, and the prediction is in good agreement with the anomalously large $Br(\rho^0 \to \pi^+ \pi^- \pi^0)$. By the fit, we also get the η - η' mixing angle $\theta = -19.68^{\circ} \pm 1.49^{\circ}$ and the constituent quark mass ratio $m_{\eta}/m_{s} \approx 0.6$ which are all reasonable.

Key words J/ψ -decays, ρ - ω interference, SU(3)-breaking effect, η - η' mixing

1 Introduction

Recently it has been predicted in Ref. [1] that there is a large isospin symmetry breaking enhancement effect in the decay $\rho^0 \rightarrow \pi^0 \gamma$ comparing with $\rho^\pm \rightarrow \pi^\pm \gamma$ due to ρ - ω interference, which was called as hidden isospin-breaking effects in Ref. [1]. This prediction has been confirmed by the renewed data in PDG-2002^[2]. Following the discussion of Ref. [1], it could be expected that a similar large hidden isospin-breaking effect should also exist in $\rho^0 \rightarrow 3\pi$ due to ρ - ω interference. In this paper we try to analyze $J/\psi \rightarrow (\rho^0, \omega) (\pi^0, \eta, \eta') \rightarrow (3\pi) (\pi^0, \eta, \eta')$, and to reveal ρ - ω interference effect and then finally to abstract out the branching ratio of $\rho^0 \rightarrow 3\pi$. Such an analysis should be necessary for further confirming the enhancement effects mentioned above, and be also interesting for the G-parity violating process studies.

It is very difficult to directly measure $Br(\rho^0 \rightarrow 3\pi)$ experimentally both because $\Gamma_{\rho} \gg (m_{\omega} - m_{\rho})$ and because the G-parity conserving decay mode of $\omega \rightarrow 3\pi$ is dominate. This is the reason why there is still no a reliable value for $Br(\rho \rightarrow 3\pi)$ yet so far in the literature [2,3]. For-

tunately, this quantity can be obtained by fitting the data of $J/\psi \rightarrow PP$ and PV (where P denotes the pseudoscalar meson nonet (π, K, η, η') , and V, the vector mesons $(\rho, \omega, K^*, \phi))^{[4]}$. Actually, more than fifteen years ago, $Br(\rho^0 \rightarrow 3\pi)$ was estimated in Ref. [4] by using the MARK- III data of $(J/\psi \rightarrow PP, PV)$ -decays with $P = (\pi, PV)$ K) and $V = (\rho, \omega, K^*)$. However, people including the authors of Ref. [4] does not think their result of $Br(\rho^0)$ $\rightarrow 3\pi$) is very reliable (see the discussion in Ref. [4] and Ref. [2]). The reasons are multi-ply, and some of them may be as follows: 1) the J/ψ -decay data quality at that time was not good enough; 2) the fitting is not complete because the processes of $(J/\psi \rightarrow \eta V, \eta' V, P\phi)$ were not considered; 3) lacking a theoretical understanding why their result is so significantly different from the result of Ref. [3] which is quoted by PDG^[2]. Our motive of this paper is to try to solve those problems: 1) We shall use nowadays data of (J/ ψ PP, PV) in PDG-2002^[2] to perform the fit; 2) $(J/\psi \rightarrow \eta V, \eta' V, P\phi)$ will be considered in our analysis; 3) And the rationality of the result will be argued, i.e., we will see that the result is just consistent with the theoretical analysis in Ref. [1].

Received 21 July 2003

^{*} Supported by National Natural Science Foundation of China (90103002)

¹⁾ E-mail: liuf@mail.ihep.ac.cn

²⁾ Corresponding author, E-mail: mlyan@staff.ustc.edu.cn

The contents of the paper are organized as follows. In section 2 we describe the ρ - ω interference in the process $J/\psi \to \pi^+ \pi^- \pi^0 \pi^0$, and give the the branching ratio formulas for $(J/\psi \to PP, PV)$. In section 3, by using the PDG-2002 J/ψ decay data and the formulas given in the section 2 we perform the datum fits. The Br ($\rho^0 \to \pi^+ \pi^- \pi^0$) is obtained. The section 4 is devoted to estimate $Br(\rho^0 \to \pi^+ \pi^- \pi^0)$ by theoretical analysis. Finally, we briefly discuss the results.

2 ρ - ω Interference and branching ratios of J/ψ decays into PV and PP

The elusive $\rho^0 \to \pi^+ \pi^- \pi^0$ decay could be observed in J/ ψ decays into the $\pi^+ \pi^- \pi^0 \pi^0$ final state^[4]. Indeed, this decay can proceed through the interfering channels J/ $\psi \to \omega \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0$ and J/ $\psi \to \rho \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0$. Because J/ $\psi \to \rho \pi^0$ is caused both by strong interaction via 3 gluons and by electromagnetic (EM) interaction and J/ $\psi \to \omega \pi^0$ is caused by EM interaction merely, the passibility of the decay J/ $\psi \to \rho \pi^0$ is much larger than one of J/ $\psi \to \omega \pi^0$, i.e., $\Gamma(J/\psi \to \rho \pi^0) \gg \Gamma(J/\psi \to \omega \pi^0)$ (by using the 2002-PDG data^[2] we have $\Gamma(J/\psi \to \rho \pi^0) \approx 2.5 \times 10^2 \Gamma(J/\psi \to \omega \pi^0)$). Consequently, even though $\Gamma(\omega \to \pi^+ \pi^- \pi^0)$ may be much larger than $\Gamma(\rho \to \pi^+ \pi^- \pi^0)$, it is still hopeful to measure $\Gamma(\rho \to \pi^+ \pi^- \pi^0)$ by studying the ρ - ω interference effects in the process of J/ $\psi \to \pi^+ \pi^- \pi^0 \pi^0$.

To $J/\psi \rightarrow (\rho,\omega)\pi^0 \rightarrow 3\pi\pi^0$, the corresponding s-dependence Breit-Wigner is written as [4]

$$F(s) \equiv BW_{\omega}(s) + \epsilon e^{i\theta} BW_{\omega}(s), \qquad (1)$$

where

$$BW_i = \sqrt{\frac{m_i \Gamma_i}{\pi}} \frac{1}{m_i^2 - s - i m_i \Gamma_i}$$

is the normalized Breit-Wigner curve for $i=\omega$, ρ resonance with the mass of m_i and total width of Γ_i . The factor $\epsilon(\theta')$ is the modulus (phase) of the amplitude proceeding through the ρ resonance relative to ω resonance, which can be written as

$$\epsilon = \frac{|A(J/\psi \to \rho^0 \pi^0)|}{|A(J/\psi \to \omega \pi^0)|} \times \sqrt{\frac{Br(\rho^0 \to 3\pi)}{Br(\omega \to 3\pi)}}$$
 (2) and $\theta' = \theta_{(J/\psi \to i\pi^0)} + \theta_{(i\to 3\pi)}$ with $i = \rho, \omega$.

As we have the relations $m_{\rho} \approx m_{\omega} = m$ and $\Gamma_{\rho} \neq \Gamma_{\omega}$, the total effect is integrated over s,

$$\int ds |F(s)|^2 = 1 + \epsilon^2 + 2\epsilon \cos\theta' \frac{2\sqrt{\Gamma_{\omega}\Gamma_{\rho}}}{\Gamma_{\omega} + \Gamma_{\rho}}. (3)$$

The third term of the expression (3), $2\epsilon\cos\theta' \times \left(\frac{2\sqrt{\Gamma_{\omega}\Gamma_{\rho}}}{\Gamma_{\omega} + \Gamma_{\rho}}\right)$, is the ρ - ω interference term. According to Ref. [4]¹⁾, the phase θ' is equal to zero, and the interference effect produces a magnificent factor as a whole (we assume that the ω resonance contribution is one), i.e.

$$\int ds |F(s)|^2 = 1 + \epsilon^2 + \epsilon, \qquad (4)$$

where $\Gamma_{\rho} \approx 16 \Gamma_{\omega}^{[2]}$ has been used. Then, the interference between ρ and ω in the $J/\psi \rightarrow 4\pi$ provides a relation as follows.

$$Br(J/\psi \to \omega(\rho)\pi^0 \to 4\pi) = (1 + \epsilon^2 + \epsilon)Br(J/\psi \to \omega\pi^0 \to 4\pi).$$
 (5)

The Br $(J/\psi \rightarrow \omega(\rho)\pi^0 \rightarrow 4\pi)$ can be detected directly in experiments, but there is no a direct experiment way to measure Br $(J/\psi \rightarrow \omega\pi^0 \rightarrow 4\pi)$ in the right hand side of the above relation. Fortunately, it can be got by fitting the branch ratios of $J/\psi \rightarrow PP$ and $PV^{[4]}$. As both Br $(J/\psi \rightarrow \omega(\rho)\pi^0 \rightarrow 4\pi)$ and Br $(J/\psi \rightarrow \omega\pi^0 \rightarrow 4\pi)$ are known, we will have ϵ by Eq. (5) and then obtain desired quantity Br $(\rho^0 \rightarrow 3\pi)$ via Eq. (2).

Decays of J/ψ into (PV) and into (PP) can be factorized by a very simple and general consideration described as follows^[4]. The decays proceed through a strongly interacting three-gluon (ggg) intermediate state and through electromagnetic interaction mediated by one photon γ and (γ gg) states. In the gluonic case, there are two I=0 transitions $c\bar{c} \rightarrow ggg \rightarrow \frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$ and $c\bar{c} \rightarrow ggg \rightarrow s\bar{s}$, which are proportional to the amplitude A and $\frac{\lambda A}{\sqrt{2}}$ respectively. The parameter λ accounts for flavor-SU (3) breaking effect. The electromagnetic transitions generate the I=1 state $\left(\frac{(u\bar{u}-d\bar{d})}{\sqrt{2}}\right)$ and two I=0 states $\left(\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}\right)$ and $s\bar{s}$. Their amplitude are proportional to

¹⁾ $\theta = 0$ in $J/\psi \rightarrow (\rho \text{ or } \omega)\pi^0 \rightarrow \pi^+\pi^- 2\pi^0$ and $\theta = \pi/2$ in $J/\psi \rightarrow (\rho \text{ or } \omega)\pi^0 \rightarrow \pi^+\pi^-\pi^0$ in the paper of A. Bramon and J. Casulleras, Phys. Lett., 1986, 173B:97.

3a, a and $-\sqrt{2}\lambda a$ respectively. The flavor space wave functions for P including η and η' read

$$P = \lambda^a \Phi^a =$$

$$\sqrt{2} \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} + \frac{\eta_1}{\sqrt{3}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta_8}{\sqrt{6}} + \frac{\eta_1}{\sqrt{3}} & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta_8 + \frac{\eta_1}{\sqrt{3}} \end{pmatrix},$$

where $\eta_8 = \eta \cos \theta + \eta' \sin \theta$ and $\eta_1 = \eta' \cos \theta - \eta \sin \theta$ with θ as $\eta - \eta'$ mixing angle, and the V-wave functions including ϕ 's read

$$V = \sqrt{2} \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \overline{K}^{*0} & \phi \end{pmatrix}. \tag{7}$$

With the above, the decay amplitudes of $(J/\psi \rightarrow PP, PV)$ are as follows,

$$A(\pi^+ \pi^-) = 3a,$$
 (8)

$$A(K^+K^-) = \frac{1}{2}(1-\lambda)A + (2+\lambda)a,$$
 (9)

$$A(K^{0}\overline{K}^{0}) = \frac{1}{2}(1 - \lambda)A - (1 - \lambda)a, \quad (10)$$

$$A(\rho^0 \pi^0) = f_{\rm v}(A + a),$$
 (11)

$$A(K^{++}K^{-}) = f_v \left[\frac{1}{2} (1 + \lambda) A + (2 - \lambda) a \right], (12)$$

$$A(K^{*0}\overline{K}^{0}) = f_{V}\left[\frac{1}{2}(1+\lambda)A - (1+\lambda)a\right],$$
 (13)

$$A(\omega \pi^0) = f_{\rm V}(3a), \qquad (14)$$

$$A(\rho\eta') = f_{v}(3aX_{\eta'}), \qquad (15)$$

$$A(\omega \eta') = f_{v}[(A + a)X_{\eta'} + \sqrt{2}rA(\sqrt{2}X_{\eta'} + Y_{\eta'})],$$
(16)

$$A(\rho\eta) = f_{v}(3aX_{n}), \qquad (17)$$

$$A(\omega \eta) = f_{v}[(A + a)X_{\eta} + \sqrt{2}rA(\sqrt{2}X_{\eta} + Y_{\eta})],$$
(18)

$$A(\phi \eta) = f_{V} \left[(A - 2a)\lambda Y_{\eta} + rA(\sqrt{2}X_{\eta} + Y_{\eta}) \frac{(1 + \lambda)}{2} \right], \quad (19)$$

$$A(\phi \eta') = f_{\mathbf{v}} \left[(A - 2a)\lambda Y_{\eta'} + rA(\sqrt{2}X_{\eta'} + Y_{\eta'}) \frac{(1+\lambda)}{2} \right], \quad (20)$$

where
$$X_{\eta} = \sqrt{\frac{1}{3}} \cos \theta - \sqrt{\frac{2}{3}} \sin \theta$$
, $X_{\eta'} = \sqrt{\frac{1}{3}} \sin \theta + \frac{1}{3} \sin \theta$

$$\sqrt{\frac{2}{3}}\cos\theta$$
, $Y_{\eta}=-X_{\eta'}$, $Y_{\eta'}=X_{\eta}$. The additional parameter r is the relative weight of the disconnected diagram to connected diagram for the decays involving the final state η or $\eta'^{[5,6]}$. The Eqs. (8)—(14) are same as ones in Ref. [4], and others are new.

The corresponding branching ratios of these decays are following:

$$Br(\pi^+ \pi^-) = 9a^2,$$
 (21)

$$Br(K^+ K^-) = \left| \frac{1}{2} (1 - \lambda) A + (2 + \lambda) a e^{i\phi} \right|^2,$$
(22)

$$Br(\mathbf{K}^{0}\overline{\mathbf{K}}^{0}) = \left| \frac{1}{2} (1 - \lambda) A - (1 - \lambda) a e^{i\phi} \right|^{2},$$
(23)

$$Br(\rho^0 \pi^0) = f_V^2 | (A + a e^{i\phi}) |^2,$$
 (24)

$$Br(K^{*+}K^{-}) = f_{v}^{2} \left| \frac{1}{2} (1 + \lambda) A + (2 - \lambda) a e^{i\phi} \right|^{2},$$
(25)

$$Br(K^{*0}\overline{K}^{0}) = f_{V}^{2} \left| \frac{1}{2} (1 + \lambda) A - (1 + \lambda) a e^{i\phi} \right|^{2},$$
(26)

$$Br(\omega(\rho^0)\pi^0) = (1 + \epsilon + \epsilon^2) f_v^2 9 a^2,$$
 (27)

$$Br(\rho \eta') = f_{V}^{2} |3 a X_{\eta'}|^{2},$$
 (28)

$$Br(\omega \eta') = f_{v}^{2} \left| (A + a e^{i\phi}) X_{\eta'} + \sqrt{2} r A (\sqrt{2} X_{\eta'} + Y_{\eta'}) \right|^{2},$$
(29)

$$Br(\rho\eta) = f_{\rm V}^2 |3 a X_{\rm p}|^2,$$
 (30)

$$Br(\omega\eta) = f_{V}^{2} \left| (A + ae^{i\phi}) X_{\eta} + \sqrt{2} rA \left(\sqrt{2} X_{\eta} + Y_{\eta} \right) \right|^{2},$$
(31)

$$Br(\phi\eta) = f_{V}^{2} \left| (A - 2ae^{i\phi})\lambda Y_{\eta} + rA(\sqrt{2}X_{\eta} + Y_{\eta}) \frac{1+\lambda}{2} \right|^{2}, \quad (32)$$

$$Br(\phi \eta') = f_{v}^{2} \left| (A - 2ae^{i\phi})\lambda Y_{\eta'} + rA(\sqrt{2}X_{\eta'} + Y_{\eta'}) \frac{1+\lambda}{2} \right|^{2}, \quad (33)$$

where ϕ is their relative phase between A and a, and the parameter A and a are real. In the Eq. (24) the ρ - ω interference effect is subtracted from the branching ratio of $J/\psi \rightarrow \rho \pi^0$. In the Eq. (27), a magnificent factor $1 + \epsilon + \epsilon^2$ has been added due to Eq. (5) in order to taking the ρ - ω interference effects into account. Actually, through di-

rectly detecting the data of $J/\psi \rightarrow 4\pi$ one can only get $Br(\omega(\rho^0)\pi^0)$ rather than $Br(\omega\pi^0)$ which is equal to $f_v^2 9 a^2$.

In the branching ratio formulae of Eqs. (21)—(33) we do not write out the corresponding phase-space factors explicitly which are proportional to the cube of the final momenta in two-body decays. They will be taken into account in the practical phenomenological fit later.

3 Datum fit to obtain $Br(\rho \rightarrow \pi^+ \pi^- \pi^0)$

Let us now use the data in PDG-2002^[2] to perform the fit to all branching ratios of Eqs. (21)—(33). This fit will lead to determining the ϵ and $Br(\rho \rightarrow \pi^+ \pi^- \pi^0)$. The experimental branching ratio data of PDG-2002 are listed in the second column of Table 1.

Firstly, following Ref. [4], we use the branch ratio data of $(J/\psi \rightarrow PP, V(\pi^0, K))$ only to perform a fit to Eqs. (21)—(27)(call it as $(PP, V(\pi^0, K))$ -fit hereafter). In this case, there are seven equations with six adjustable free parameters a, A, λ , ϕ , f_v , ϵ , and hence it is an over-determination problem with potential of predictions. The fit with minimum $\chi^2 = 0.46$ leads to the values of the parameters and seven corresponding branching ratios listed in the third column of Table 1, in which $(\omega\pi^0)_{\rm uncor}$ and $(\omega\pi^0)_{\rm cor}$ represent $Br(J/\psi \rightarrow \omega(\rho)\pi^0 \rightarrow 4\pi)$ and $Br(J/\psi \rightarrow \omega\pi^0 \rightarrow 4\pi)$ respectively, i.e.,

$$Br(J/\psi \to \omega \pi^0)_{\rm cor} = f_V^2 9 a^2. \tag{34}$$

In the fit (see Table 1), we have $(\omega \pi^0)_{uncor} = (4.2 \pm 0.61) \times 10^{-4}$, $a = 0.21 \pm 0.02$, $A = 2.94 \pm 0.72$ and the interference factor $\epsilon = 0.71 \pm 0.58$, then we obtain $(\omega \pi^0)_{cor} = f_V^2 9 a^2 = (1.89 \pm 0.83) \times 10^{-4}$. In other hand, from Eqs. (2), (11), (14), ϵ reads

$$\epsilon = \frac{|A + ae^{i\phi}|}{|3a|} \times \sqrt{\frac{Br(\rho \to 3\pi)}{Br(\omega \to 3\pi)}} . \quad (35)$$

Then the branching ratio of $\rho \rightarrow \pi^+ \pi^- \pi^0$ is predicted as follows,

$$Br(\rho \rightarrow 3\pi) = Br(\omega \rightarrow 3\pi) \times \left(\frac{3|a|}{|A| + ae^{i\phi}|}\right)^2 \epsilon^2.$$
 (36)

Substituting the a, A and ϕ values obtained from the fit (see the third column of Table 1) and experiment data of $Br(\omega \rightarrow 3\pi)$ into Eq. (34) and Eq. (36), we then ob-

tain the (PP, V(π^0 , K))-fit's results as follows, $Br(J/\psi \to \omega \pi^0)_{cor} |_{(PP,V(\pi^0,K))} = (1.89 \pm 0.83) \times 10^{-4},$ (37) $Br(\rho \to \pi^+ \pi^- \pi^0) |_{(PP,V(\pi^0,K))} = (2.0 \pm 1.64) \times 10^{-2}.$

Table 1. The second column displayed the experimental values for the branch ratios of $J/\psi \rightarrow PP$ and $J/\psi \rightarrow PV$ in PDG-2000 datum. The results of a fit to the first seven branching ratios is listed in the third column. The results of a fit to the total thirteen branching ratios is listed in the forth column.

branching ratios is fisted in the forth column.			
J/ψ decay	PDG-2002	a partial fit 1	a global fit 2
	$(\times 10^{-4})$	$(\times 10^{-4})$	(×10 ⁻⁴)
1.π+π-	1.47 ± 0.23	1.44 ± 0.23	1.92 ± 0.05
2.K+K-	2.37 ± 0.31	2.45 ± 0.28	2.04 ± 0.08
$3.K^0\overline{K}^0$	1.08 ± 0.14	1.06 ± 0.14	0.87 ± 0.05
$4 \cdot \rho^0 \pi^0$	42.0 ± 5	43.04 ± 4.48	41.97 ± 0.68
5.K*+K-	25.0 ± 2.0	24.11 ± 1.41	23.64 ± 0.5
6.K*0K0	21.0 ± 2.0	21.66 ± 1.7	24.21 ± 0.49
7. (ωπ ⁰) _{uncor}	4.2 ± 0.6	4.2 ± 0.61	4.2 ± 0.2
$8.(ho\eta')$	1.05 ± 0.18		0.7 ± 0.05
9. (ωη')	1.67 ± 0.25		1.73 ± 0.11
10. (ρη)	1.93 ± 0.23		1.82 ± 0.08
11. (ωη)	15.8 ± 1.6		18.32 ± 0.36
12. (φη)	6.5 ± 0.7		5.85 ± 0.23
$13.(\phi_{\eta'})$	3.3 ± 0.4		2.55 ± 0.23
χ²		0.46/1	21.4/5
EDM		0.45×10^{-6}	0.69×10^{-6}
fit a		0.21 ± 0.02	0.24 ± 0.012
A		2.94 ± 0.72	2.69 ± 0.17
λ		0.6 ± 0.1	0.62 ± 0.03
φ		1.37 ± 0.14	1.6 ± 0.11
$f_{\mathtt{V}}$		1.26 ± 0.36	1.38 ± 0.1
6		0.71 ± 0.58	0.3 ± 0.16
θ			-0.343 ± 0.026
r			- 0.144 ± 0.001
(ωπ ⁰) _{cor}		$(1.89 \pm 0.83) \times 10^{-4}$	$(3.02 \pm 0.2) \times 10^{-4}$
ρ→3π		$(2.0 \pm 1.64) \times 10^{-2}$	$(0.59 \pm 0.315) \times 10^{-2}$

Secondly, we perform more complete datum fit in which the processes of $J/\psi \rightarrow V\eta$ and $J/\psi \rightarrow V\eta'$ are included. In this case, there are 13 Eqs. ((21)—(33)) and eight free parameters: a, A, λ , ϕ , f_v , ϵ , θ , r. And hence it is an over-determination problem with more constraints, and will be called as (PP, $V(\pi^0, K, \eta, \eta')$)-fit hereafter. The results are as follows,

$$Br(J/\psi \rightarrow \omega \pi^{0})_{cor} |_{(PP,V(\pi^{0},K,\eta,\eta'))} = (3.02 \pm 0.2) \times 10^{-4},$$
(39)

$$Br(\rho \to \pi^+ \pi^- \pi^0) \mid_{(PP,V(\pi^0,K,\eta,\eta'))} = (0.59 \pm 0.315) \times 10^{-2},$$
(40)

 $\theta = -0.343 \pm 0.026 = -19.68^{\circ} \pm 1.49^{\circ}$, (41) where η - η' mixing angle θ is agreement with one in Refs. [5,6], and both $Br(J/\psi \rightarrow \omega \pi^{0})_{cor}$ and $Br(\rho \rightarrow \pi^{+} \pi^{-} \pi^{0})$ are reasonable agreement with the results Eqs. (37), (38) obtained by (PP, $V(\pi^{0}, K)$)-fit within the errors.

The parameter λ is the constituent quark mass ratio m_u/m_s which should be about $0.6^{[6-8]}$ due to light flavor SU(3)-breaking. The results of $\lambda\approx 0.6\pm 0.1$ for (PP, $V(\pi^0,K)$)-fit and $\lambda\approx 0.62\pm 0.03$ for (PP, $V(\pi^0,K,\eta,\eta')$)-fit indicate the fits meet this requirement, and, hence, the results yielded by them are rather reliable.

4 Large isospin breaking effect in decay $\rho^0 \rightarrow \pi^+ \pi^- \pi^0$

In this section, following Ref. [1], we provide a theoretical estimation to $Br(\rho^0 \rightarrow \pi^+ \pi^- \pi^0)$. Using Feynman propagators method, the on-shell amplitude^[1] of the decay $\rho \rightarrow \pi^+ \pi^- \pi^0$ is determined by

$$\mathcal{M}_{\rho^{0} \to 3\pi} = \left(f_{\rho^{3\pi}} + \frac{\Pi_{\rho\omega}(p^{2}) f_{\omega^{3\pi}}}{p^{2} - m_{\omega}^{2} + i m_{\omega} \Gamma_{\omega}} \right) \Big|_{p^{2} = m_{\rho}^{2}},$$
(42)

where, the momentum-dependent ρ^0 - ω interference amplitude $\Pi_{\rho\omega}(p^2)$ is defined by the ρ - ω interaction Lagrangian $\mathscr{L}_{\omega\omega}$ as follows,

$$\mathcal{L}_{\rho\omega} = \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \mathrm{e}^{-\mathrm{i} p \cdot x} \Pi_{\rho\omega}(p^{2}) \left(g^{\mu\nu} - \frac{p^{\mu} p^{\nu}}{p^{2}} \right) \omega_{\mu}(p) \rho_{\nu}^{0}(x).$$
(43)

The first and second term of expression (42) correspond to the contributions of direct coupling (ρ^0 -3 π) and ω resonance exchange respectively. Because $m_{\rho} \approx m_{\omega}$ and Γ_{ω} is small, the denominator of the second term is small. Therefore, contribution from ω resonance exchange is large. This is called "hidden isospin symmetry breaking effect" according to Ref.[1]. This effect brings a significant contribution and plays an essential role in the decay $\rho \rightarrow \pi^+ \pi^- \pi^0$. So when we deal with the decay of $\rho \rightarrow \pi^+ \pi^- \pi^0$, the process $\rho \rightarrow \omega \rightarrow \pi^+ \pi^- \pi^0$ must be considered.

In fact, the contributions of ρ^0 - ω interference are dominant and the direct coupling can be omitted. The direct coupling $f_{\rho 3\pi} \propto (m_{\rm d} - m_{\rm u})$, therefore, it is very

small. In order to be sure of this point, we derive this quantity in a practical model called as $U(2)_L \times U(2)_R$ chiral theory of mesons^[9] in follows. Denoting the direct vertices of ρ^0 - 3π as $\mathcal{L}_{\rho 3\pi} = f_{\rho 3\pi} \, \epsilon^{\mu \nu a \beta} \epsilon_{ijk} \rho^0_{\ \rho} \, \partial_{\nu} \pi^i \, \partial_{\alpha} \pi^j \, \partial_{\beta} \pi^k$, then $f_{\rho 3\pi}$ can be calculated in this theory^[9] and has the form

$$f_{\rho 3\pi} = -\frac{m_{\rm d} - m_{\rm u}}{\pi^2 g f_{\pi}^3 m} \left(1 - \frac{16c}{3g} + \frac{6c^2}{g^2} - \frac{8c^3}{3g^3} \right) \approx$$

$$-2 \times 10^{-11} \,\text{MeV}^{-3} , \qquad (44)$$

where the values of model's parameters m, g, c determined in Ref.[9] have been used. To the second term in the parentheses of expression (42), $\Pi_{\rho\omega}(m_{\rho}^2)$ has be determined to approximate $-4\times10^3\,\mathrm{MeV}^{2\,[10,11]}$. $\omega\to3\pi$ is the dominant channel for ω -decays, and hence $f_{\omega3\pi}$ can be estimated by using the width $\Gamma_{\omega\to3\pi}=7.5\,\mathrm{MeV}$. It is approximate value is about $3\times10^{-7}\,\mathrm{MeV}^{-3}$. Thus the typical value of the second term in expression (42) is $(5+2i)\times10^{-8}\,\mathrm{MeV}^{-3}$ approximately. Comparing it with expression (44), we can see that the direct coupling $f_{\rho3\pi}$ is indeed very small, and it is ignorable. Therefore, discarding $f_{\rho3\pi}$ in expression (42), we have, approximately,

$$\Gamma_{\rho^0 \to 3\pi} = \left| \frac{\Pi_{\rho\omega} (m_{\rho}^2)}{m_{\rho}^2 - m_{\omega}^2 + i m_{\omega} \Gamma_{\omega}} \right|^2 \Gamma_{\omega \to 3\pi}. \quad (45)$$

This equation means that the contributions due to ρ - ω interference to $Br(\rho^0 \rightarrow 3\pi)$ are dominate, or the hidden isospin-breaking effects introduced in Ref. [1] are dominate for the process $\rho^0 \rightarrow 3\pi$. From expression (45) we obtain desired result as follows,

$$Br(\rho^0 \to 3\pi) \approx 0.2 \times 10^{-2}$$
. (46)

Our experiment datum fitting result (40) is consistent with this theoretical estimation result. This fact indicates that both (PP, $V(\pi^0, K)$)-fit and (PP, $V(\pi^0, K, \eta, \eta')$)-fit are reasonable even though the resulting $Br(\rho^0 \rightarrow 3\pi)$ is much larger than one in Ref.[3] and rather closes the upper limit for it in Ref.[12].

5 Discussion

Through the study presented in the above, we conclude that $\rho\text{-}\omega$ interference effects can be detected in the $J/\psi \to \pi^+ \ \pi^- \ \pi^0 \pi^0$ decay, which receives a contribution from the $\rho^0 \to \pi^+ \ \pi^- \ \pi^0$ decay mode. J/ψ decays offer an almost unique opportunity for observing $\rho^0 \to \pi^+ \ \pi^- \ \pi^0$,

where the smallness of Br ($\rho^0 \rightarrow \pi^+ \pi^- \pi^0$)/Br ($\omega \rightarrow \pi^+ \pi^- \pi^0$) is compensated by the large ratio A ($J/\psi \rightarrow \rho \pi^0$)/A($J/\psi \rightarrow \omega \pi^0$) between a (simply Zweig-forbidden) strong amplitude over an EM one. This is the key point for the practical determining Br ($\rho^0 \rightarrow \pi^+ \pi^- \pi^0$) through employing J/ψ decay branching radios. Our results for 2 datum-fits are Br ($\rho \rightarrow \pi^+ \pi^- \pi^0$) $|_{(PP,V(\pi^0,K))} = (2.0 \pm 1.64) \times 10^{-2}$ and Br ($\rho \rightarrow \pi^+ \pi^- \pi^0$) $|_{(PP,V(\pi^0,K,\eta,\eta'))} = (0.59 \pm 0.315) \times 10^{-2}$ respectively, which are anomalously large and match each other within the errors.

In order to pursue whether these anomalously large results of $Br(\rho \to \pi^+ \pi^- \pi^0)$ are reasonable or not, a theoretical estimation for ρ - ω interference effects to the process of $(\rho \to \pi^+ \pi^- \pi^0)$ has also been discussed in this paper. Following Ref. [1], we found that the contributions due to so called hidden isospin-breaking effects are dominate

for the process $\rho \to \pi^+ \pi^- \pi^0$. The theoretical prediction is $Br(\rho^0 \to 3\pi) \approx 0.2 \times 10^{-2}$ which is in good agreement with our datum-fit results. Then, considering this fact and noting that both result of $\eta - \eta'$ angle θ and the result of constituent quark ratio $\lambda = m_u/m_s$ obtained by the fits are also reasonable, we conclude that $Br(\rho \to \pi^+ \pi^- \pi^0) \approx 10^{-3} - 10^{-2}$ is reliable.

Finally, we like to argue that in order to reduce the error-bar of $Br(\rho \to \pi^+ \pi^- \pi^0)$, more precisely experimental measurements to $(J/\psi \to PP, PV)$ are expected. The high quality data for J/ψ in the future BES \parallel would be useful.

We would like to thank Zheng Zhi-Peng, Shen Xi-ao-Yan, Zhu Yucan, Yuan Chang-Zheng, Fang Shuang-Shi for helpful discussions.

References

- 1 WANG X J, JIANG J H, YAN M L. Eur. Phys. J. A, 2002, 14: 219—224
- 2 Particle Data Group. Phys Rev., 2002, D66:010001-458
- 3 Vasserman I B et al. Sov J of Nucl Phys., 1988, 48:480 (translated from YAF., 1988, 48:753)
- 4 Bramon A, Casulleras J. Phys. Lett., 1986, 173B:97

- 5 Jousset J et al. Phys. Rev., 1990, D41:1389
- 6 Baltrusaitis R M, Coffman D et al. Phys. Rev., 1985, D32;2883
- 7 de Rujula A, Georgi H, Glashow S L. Phys. Rev., 1975, D12:147
- 8 Ametller LI, Bramon A. Ann. Phys. (NY), 1984, 154:308
- 9 LI B A. Phys. Rev., 1995, **D52**:5165
- 10 Coon S A, Barrett R C. Phys. Rev., 1987, C36:2189
- 11 GAO D N, YAN M L. Eur. Phys. J.A, 1998, 3:293
- 12 Abrams G S et al. Phys. Rev., 1971, D4:1092

在 J/ ψ 衰变与 $\rho \rightarrow \pi^+ \pi^- \pi^0$ 衰变中的 ρ -ω 干涉 *

刘芳1,2;1) 李金2 黄亦斌1 闫沐霖1;2)

1(中国科学技术大学交叉学科理论研究中心 合肥 230026) 2(中国科学院高能物理研究所 北京 100039)

摘要 通过分析 $J/\psi \to \pi^+ \pi^- \pi^0 \pi^0$ 来研究 $\rho - \omega$ 干涉. 利用描述 J/ψ 衰变的一般的唯象模型对 PDG-2002 关于 J/ψ 衰变到 PP 和 PV 的实验数据做了拟合(P表示赝标介子,V表示矢量介子),得到 $\rho^0 \to \pi^+ \pi^- \pi^0$ 反常大的分支比~ $10^{-3} - 10^{-2}$. 理论的分析结果也与这一反常大的分支比相符合. 同时,得到了合理的 $\eta - \eta'$ 混合角和组分夸克质量比: $\theta = -19.68^\circ \pm 1.49^\circ$, $m_\pi/m_\pi \approx 0.6$.

关键词 J/ψ 衰变 ρ -ω干涉 SU(3)破缺效应 η - η' 混合

^{2003 - 07 - 21} 收稿

^{*} 国家自然科学基金(90103002)资助

¹⁾ E-mail: liuf@mail.ihep.ac.cn

²⁾ 通讯联系人, E-mail: mlyan@staff.ustc.edu.cn