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Abstract There are two methods to take account of the contribution of negative energy states in the relativistic random phase approx-

imation. One is due to Dawson and Furnstahl. They made the ansatz that the Dirac sea is empty. The other is the Dirac hole theory,

which postulated that the sea should be fully occupied. The two methods seem contradictory concerning the way through which the

negative-energy states contribute. The relation between the two theories is studied and the conditions under which the Dawson-Furn-

stahl theory is a good approximation to the Dirac theory are enunciated.
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There are two methods to take account of the contribu-
tion of the negative-energy states in the relativistic random
phase approximation (RRPA). One is the wellknown Dirac
hole theory and the other is due to Dawson and Furnstahl (D-
F) 2

take the negative-energy (NE) states into account, because

They pointed out that it is of vital importance to

only then will the Dirac single-particle basis become com-
plete. They found that in this way the law of current conser-
vation can be preserved and the spurious J* = 17! state fully
separated out. Since in the relativistic mean-field theory
(RMFT) % 3| no-sea approximation is made, they suggested
that on the basis of RMFT one may assume the NE sea is
empty and thus besides the positive energy (PE) particle-hole
pairs one should further consider pairs formed from a particle
at one of the NE states and a hole in the occupied PE states
(referred to as ah pairs as in Ref. [4]) . Since RMFT based
on the method of effective Lagrangians has now achieved a re-
markable success in describing the ground-state properties of
nuclei quantitatively, it is natural to ask whether such La-
grangian can also give a good description of nuclear excited
states. Ma et al.' found that the D-F method can indeed
improve the no-sea approximation significantly. Recently,

Ring et al. ] have made a detailed study of the etffects of the
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ah pairs and found that they are indeed important. However,
according to the Dirac hole theory, which observes the energy
principle and assumes the negative-energy states are fully oc-
cupied, the particle-hole pairs one should consider are formed
from a particle at one of the unoccupied PE states and a hole
either in the occupied PE states or in the fully filled NE states
(the latter hole, as wellknown, is the antiparticle) . So, how
are the ah and particle-antiparticle pairs related with each
other, as they differ qualitatively?

We would like to point out that the D-F method can be
understood from another point of view. It is closely related
with the Dirac hole theory. Their relation and the conditions
under which the D-F method can be regarded as a good ap-
proximation to the Dirac theory will be discussed in some de-
tail in the following.

For simplicity of description we shall restrict our discus-
sion to nuclear matter. For our purpose it suffices to consider
the correlation function
C(A,B§x1’x2) =<T[A(x1)B(x2)]> -

(A(x,))(B(x,)), (1)
where (0) = (@1 01%,),K(x) = ¢(x)Tp(x)(K=4
or B), (/1( x)is the nucleon field operator, whereas operator

I,

. is field- and time-independent. For instance, for the
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isovector multipole operator we have I', = 7,7 * Y, (0, ¢)
and for the bilinear Dirac current and scalar I, = 7. (k= 7
=1,2,3,4) and I, =1, respectively, etc. In the lowest or-
der approximation Eq. (1) has the form
CO(A,B;xl,xz) = - Tr[FA(xl)Go(xl - xz) X
Ip(x,) 6°(x, - %) 1, (2)
where G°(x) is the relativistic Hartree approximation to the
nucleon propagator
Gup(w =) = x,) = (TL ¢ (%)) pp( %) 1) (3)
and x = x, = (x,ixg) with xg = t. If ', is further indepen-
dent of x (indicated by « taking a small letter), the Fourier
transform of Eq. (2) is given by
CCa,bskk') = - 2n)*6W (k - k')Ji‘% x
(2x)
T I,6°(q + k) I,6°(q)]

= 2n)*0W(k - k)Ca,bsk), (4)
where C°(a,b;k) is just the expression for the polarization
tensor in the o-w model, if I', = { }’#,1} (k=1105).

In the following, we will give the detailed formula of
C°(a,b;k) for Dirac’s hole theory and D-F’s method, and
show their differences. Firstly, in the Dirac hole theory, us-
ing the relation G°(p) = G¥(p) + G%(p), where

o N N | { 0(E,)
GF(P)—(V;AP#+1M )2|Ep| Po_Ep+i€+

(- E,) }
po— E, —iel’

(5a)

63(p) = (1, + 1M ) 0(p) 0k -
P

Ip1)é(po-E,), (5b)
E, =+ [p2 + M*2]1Y2, M* is the effective mass and kg
denotes the Fermi momentum, we may rewrite C°(a,b; k)
as
C°(a,bsk) = Cyela,bsk) + Ch(a,bsk) +
Cho(a,bsk), (6a)
C%(a,bsk)=C%Ca,bsk)+ Ch(a,bsk). (6b)
On the right-hand side of Eq. (6) the subscript D or F indi-
cates G°in Eq. (4) is G% or G» and the three parts will be
referred to as FF-, m- and DD-part, respectively.
Secondly, in D-F method, it makes an alternative ansatz
for G°, which will be denoted G°. It accomplishes the MFT
prescription by shifting the negative-energy poles to the lower-

half planes, as if the Dirac sea were empty. In particular,

1 6(E.)
{ T
21E, 1 Lpy— E, +ic

G p) =(y,p, +iM")

6(-E,)
po- By ™

and G%(p) = G%(p) . Clearly, comparing Eq. (5) and Eq.
(7), the only difference between G°(p) and G°(p) consists
in their F (Feynman) part. Since all the poles of G%(p) are
in the lower-half plane, substituting Eq. (7) in Eq. (4), as
pointed out in Ref. [1], we get E%F( a,b;k) =0. Besides,
we find CYp(a,bsk) = Cop(a,bsk) and
C°Ca,bsk) =C%(a,bsk) + Chp(a,bsk), (8a)
C°%(a,bsk)=C%Ca,b;k)+AC,. (8b)
Comparing Eq. (8) with Eq. (6), one notes the assumption
of empty NE sea is equivalent to the assertion that C% can be
neglected and C°, differs from C° by AC® . Thus, if they are
small, the D-F theory will be a good approximation to the
Dirac hole theory. Moreover, Eq. (8) shows why the D-F
method can give a better result than the no-sea approxima-
tion, because the latter only takes account of C3p and a part
of C° given by the first term in Eqs. (5a) or (7), while the
former has further correctly considered the full C°, with even
a correction AC(,),L(see below) .

In order to expose the physical implication of Eq. (8)
more clearly, consider, for instance, Eq. (4) with T =y
and I'y = 7, . Substituting G%(p) and a%(p) in Egs. (6b)
and (8b), we obtain

Im[iC%(9,A3k)]=M(9,A5k) + My(n,A5k),

(9a)
Im(iC% (9, A5k)] = M(9,A3k) = My(9,A3k),
(9b)
M (7,25k) = — é]dﬁ‘g(“;%') x
{5’“(};—2“6(% + E, - E,..) +
51(;#“50% S E,+ B b (9)
My(p,A5k) = - éJ(PqMF_E%') x
{E”A(qu%k)ﬂko + E, + E.,;.) +
5*2%”3(1;0 _E,-E,,) } (9d)

where Eq = [q + M*%]V? and
talgxk)=12q9 +qk +qk F ‘I"“Squf@,-
(10)
Since AC?,,(r], Ask) = —2M,( 7,45 k), one concludes
that C° and C° differ from each other only in the sign before
M,. If we require ko >0, it is seen from Eq. (9d) that the

first term in M, is zero and only the second term will con-
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tribute. Chin noted'®’ that this term represents the decay
mechanism of the collective mode caused by the particle-an-
tiparticle pair creation. We shall show that the D-F ansatz
gives a correct sign of the relevant damping width, though the
latter is now related with the ah pair. The J-function in
Eq.(9d) shows M, becomes effective only if ko > 2M "2,
which is about 1.1GeV for M* ~0.6M, i.e. if the excita-
tion energy is not too high, we have 6‘3" =~ C° . Since M, =0
if 0< kg <2M™?, in the energy region where for instance,
giant multipole resonances are studied we even expect C°, =
C°, . Clearly the above derivation also applies to the other
components of C’(a,b;k)(see Eq. (4)) and similar re-
sults obtain. The detailed formulae and the corresponding
renormalization procedure will not be written down here, as

(=81 and space-consuming.

they are known

Sofar we have only considered the lowest order approxi-
mation to Eq. (1). The parameters used are g> = 0.6942,
22 =1.2059(g* = g%/167*) , whereas k=280, M = 939,
m, =520, m, = 783 (all in MeV) and M* =0.6M. To il-
lustrate the effects of C% and AC® (see Egs. (6) and (8))
as well as the difference in results between the Dirac and D-F
theories, we shall, as an example, discuss C (4) =
Im[iC(4,4;k)], which is real and nonnegative and closely
related to the longitudinal response function. In Fig. 1, it
shows the dependence of C°(4) on the energy transfer k.
Note its dimension is [ mass ]* as indicated. Indeed, in the
small %k, region we have c’(4) = ¢° (4), because both
C%F(4) and AC?,L(4) will not be zero only if ko >2M" . In
the large k, region since C9,(4) = E%D(4) =0 (see Eq.
(A. 24) in Ref. [7]) and according to Eq. (9b) M,(4,4;
k) = 0 for timelike k#m, one gets C°(4) = €% (4) and
C0(4) = C?n(4) + C%F(4) . From Fig.1 it is seen that the

20 | — C'@) -

~— --= C'(4)(without Im[iC x(4)])
(=] ~

— —_— 0,

3 15 F C(4) E
> 10 f h
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Fig.1. Imaginary part of the lowest order approximation to

the correlation function C(4,4;%):C%(4) =Im[iC°(4,4;%)].

sign of 63,(4) is correct, while C(,),,(4) = - (:’?n(4) has a
wrong sign. However, in the Dirac theory the relevant effect
is represented by €°(4) whose sign is again correct owing to
the contribution of C%:(4). It is interesting to find that AC°,
included in E‘,’n in Eq. (8b) actually means a correction
rather than a defect. It somehow tries to correct the drawback
of neglecting C%, though the effect is not yet sufficient as

shown by the figure.
I Iy I, I'p

Fig.2. Graphical representation of RRPA for the calculation

of the correlation function C(a,b;x;,x,).

In order to gain some idea about the accumulative ef-
fect, we have further made a RRPA calculation of C(a,b;
%1,%,) with C° given by Eq. (4). In the perturbation ex-
pansion of C(a, b; %, x,) we take only the ring diagrams
and sum them to all orders. This is equivalent to the RPA.
The summation of ring diagrams leads to the integral equation
for the correlation function,

Cla,b;k)=C% a,b;k)+

C(a,c;k)A,(k)C(d,bsk), (11)
_ (ig,)* A% 0
where A%, (k) = ” and
0 g:A,

A(,]C(k) =K+ mi] NWk=sorv). Fig.2 shows Eq. (11)
diagrammatically. Two calculation schemes are considered.
One is the w-scheme, in which only the vector meson is tak-
en into account. In this case A, reduces to (ig, )ZA?,S#,.
The other is the pg-scheme, where the scalar and vector
mesons as well as their mixing are considered, i.e. the full
C(a,b; k) is used (see Ref.[6] and Eq. (19)). C(4,
w) and C(4, p) will be used to denote results calculated ac-
cording to the w-scheme and p-scheme, respectively. We
have solved Eq. (11) and depicted our calculated RRPA re-
sults in Fig.3. Comparing with the lowest order approximation
one notes the accumulative effect is quite important. It
changes not only the magnitude but also the behavior of
C°(4) palpably. Since according to Eq. (11) the real as
well as the imaginary part of C%(a,b; k) is effective, it is
interesting to ask whether C% may now cause some marked
difference between C(4) and c (4). Consider first the w-
scheme. It is seen that in the region of small k, we still have
C(4,w) =~ C(4, w) for small as well as large momentum

transfer k, = | k1. In the large k, region their magnitudes
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become much smaller and they differ widely. Consider now
the p-scheme. Though in the region of large k, we have
C4,w)=~C(4,u)and é(4,w) o~ 6’(4,#) for both small
and large k,, there is an unexpected effect of the mixed po-
larization insertion (MPI) in the small k, region. Clearly the
difference between C (4, p) and C(4,w) as well as that be-
tween C (4, ,u) and C (4, w) is mainly caused by MPI,
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Fig.3. Curves represent C(4) =Im[iC(4,4;%)] in RRPA.
(a) Momentum transfer k,= | k| = 1.5k, where C(4,w) =~
C(4, p0)if ky is large; (b) k, =0.7ky, where C(4,w) ~
C(4,p) if kg is small, while C(4,w) = C(4, ) and
C4,w)=C(4,p) if kg is large.

while the reason that C (4, p) differs from C (4, y) and
C(4,w) from C(4, w) is chiefly due to the accumulative ef-
fect of the FF-part of the polarization tensor ( AEFF) . Fig.3
shows both MPI and AEFF affect C (4, ) and there is a sig-
nificant difference between C(4, ) and C(4,y) . Thus, it
is difficult to regard C (4, 1) as a good approximation to
c(4, 1) . However, this does not mean that the D-F method
cannot be successfully applied to this %k, region, which is im-
portant for the study of giant resonances and quasielastic elec-
tron scattering, because AEFF may still be taken into account
effectively by readjusting the relevant parameters. In Fig.4,
we have plotted the results of C (4, ) by adjusting g2 for k,
=2kg,k,=1.5kp and k, =0.7ky, respectively. We keep
C(4, ) the same as given in Fig.3, because we presume it
is the correct one. In Fig.4(b), it is seen that C (4, ) can
be made to approach C(4,.), and in Fig.4c, C(4,p) for
g2=0.233 and C(4, ) are closed to each other. However,
from Fig.4 (a) to 4(c), we have found that the fitting is
quite difficult for large k,, though it is easier if k, is smaller.

It suggests AEFF is still worthy of study. Clearly the readjust-
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Fig.4. 6(4,/1) for different values of gi :0(dotted line) ,
0.233(dash-dot-dotted line) ,0.4(dashed line) ,0.6942(light
solid line)and 0.78 (dash-dotted line) . (a) k, = 2kp; (b)
k,=1.5kg;(c)k,=0.Tkg.

ment can be achieved more effectively, if the model contains
more adjustable parameters. For large £y, as can be seen
from Fig.3, to try to fit Z'(4,,u)with C(4,;¢)is not mean-
ingful. Fig. 4 discloses C (4, z) changes noticeably with
model parameters. It hints, as point out in Ref. [4], the re-
lated small amplitude oscillations might only be quasi-stable.
However, according to our calculation the change of C(4, )
with g2 proceeds gradually (see Fig.5).

In summary, we have shown the D-F ansatz is not in

C(4, 0)/MeV? (X 10%

0 100 200 300
ko/MeV

Fig.5. C(4,p) for different values of gi .
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contradiction with Dirac’s hole theory. It is better than the correction is generally not yet sufficient. For the calculation
no-sea approximation, because in addition to the DD-part, it of response functions our results confirm the previous conclu-
has correctly taken the m-part into account and besides, it sion 1 3 6%] that a RRPA calculation is necessary. They

even contains a correction to the approximation where one further indicate that both MPI and AEFF are important .

simply neglects the FF part in the Dirac theory, though the
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