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Abstract Random one plus two-body hamiltonians invariant with respect to O (/%) @ O (./4;) symmetry in the group-subgroup chains
U DU UA)DO0(AH)DO(A)and U(A)D O(AN)D O(AH)P 0(A3) of a variety of interacting boson models
are used to investigate the probability of occurrence of a given( w, w, ) irreducible representation(irrep)to be the ground state in even-
even nuclei;[ @, ] and [ w,] are symmetric irreps of O (.4{) and O(.4;) respectively. Employing a 500 member random matrix en-
semble for N boson systems (with N =10 - 25), it is found that for .4{,.# =3 the (w,w,) = (00) irrep occurs with ~ 50% and
(wjw,) = (NO) and (ON) irreps each with ~ 25% probability. Similarly, for #{=3,.4 = 1,for even N the w; = 0 occurs with ~
75% and w; = N with ~ 25% probability and for odd N, w; =0 occurs with ~50% and w; =1, N each with ~ 25% probability.
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An extended Hartree-Bose mean-field analysis is used to explain all these results.
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1 Introduction

Two-body random matrix ensembles (TBRE) defined
over Hilbert spaces of various nuclear models led to the dis-
covery that many of the regular features observed in low-lying
levels and near the yrast line in nuclei can arise due to ran-
dom interactions (with rotational symmetry) and this is op-
posed to the conventional ideas of using regular (or coherent)
interactions like pairing etc. in the nuclear hamiltonian. For
the first time this result is found by Bertsch et al. [1] using the
shell model who showed that with random interactions ground
states in even-even nuclei will be 0* with very high probabili-
ty and they also generate odd-even staggering in binding ener-
gies, the seniority pairing gap etc. Similarly, Bijker and
Frank'?! using the interacting boson model showed that ran-
dom interactions generate vibrational and rotational structures
with high probability. These unexpected results gave rise to a
new field of research activity with random interactions in nu-
clei (they go beyond the TBRE applications for smoothed
(with respect to energy) state densities, strength sums, transi-

tion matrix elements, information entropy in wavefunctions
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etc. in nuclei and other finite quantum systems;see [3] and
references therein) . In particular: (i)Zelevinsky and collabo-
rators proposed the idea of geometric chaos for describing reg-
ular features generated by TBRE’s; (ii) Arima’s group intro-
duced a variety of prescriptions, for predicting the probabili-
ties, for simple systems such as single j-shell for fermions,
single [-shell for bosons and some of their extensions;
(iii) Bijker and Frank used a mean-field analysis with pro-
jective coherent states for interacting boson systems. For de-
tails of these studies we refer the readers to two recent reviews
on this subject[4’5] .

A very important aspect of TBRE’s is that they admit

6] With m particles (fermions or bosons)

group symmetries
in ./ single particle states there is a U(.#") spectrum gene-
rating algebra (SGA) . In all the shell model/Interacting bo-
son model studies reviewed in[4,5 ]Jone plus two-body hamil-
tonians that are rotational scalars are considered,i.e. all the
0(3) scalars in U(.#") D 0(3) with one and two particle
matrix elements of the one and two-body parts respectively

chosen to be random variables (in some studies the one body

part is dropped) . Immediately one sees that TBRE’s can be
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extended to scalars of various subgroups of U (./7),i.e.
scalars of G in U(#7) D 6D ...D 0(3). The purpose of
the present paper is to consider such an extension to O (/)
@ 0(A5) , M+ Ny = N which appears in a very large class
of interacting boson models (IBM’s) used in nuclear structure
and address the question of with what probability a given
(wlwz) irreducible representation (irrep) will be the ground
state in even-even nuclei ; note that [wl] and [w2] are sym-
metric irreps of O(.4]) and O(.J;) respectively. In Section
2 given are the random one plus two-body hamiltonians with
O(AN)PDO(H;) symmetry in interacting boson models.
Section 3 gives the results of numerical TBRE calculations
and their understanding using an extended Hartree-Bose
mean-field analysis. Finally Section 4 gives conclusions and

future outlook .

2 Random interactions with O (/) @ O (.3)
symmetry in IBM’s

Large class of interacting boson models (IBM’s) of nu-
clei admit U(/)D U(A)@ U(A) D 0(H)D 0(A)
and U(A7) D 0(AH") D O(AH) @D 0(A5) group-subgroup
chains; /= 4+ ;. Examples (all for even-even nuclei)
are: (i) spIBM or nuclear vibron model'”) with U (4) SGA
and (A, 45) = (3,1);(ii) sdIBM for quadrupole collective
states’®! with U (6) SGA and (4, 45) = (5, 1);
(iii) spdIBM for GDR states'® with U(9) SGA and (.4,
) =(8,1),(6,3),(5,4); (iv) sdgIBM for quadrupole
plus hexadecupole states ! with U (15) SGA and (A7, 45)
=(14,1),(9,6),(10,5); (v) sdpfIBM for octupole
states''!) with U(16) SGA and (,.%) = (15,1),(10,6)
etc. ;(vi) sdgpfIBM'?) with U(25) SGA and (], 45) =
(24,1),(15,10) etc; (vii) spp' IBM or the U(7) model for
3-body clusters in nuclei’™ with U (7) SGA and (J,.4;) =
(6,1),(4,3); (viii) IBM-3 or the isospin (T) invariant
sdIBM (here the bosons carry T =1 degree of freedom ) 4]
with U(18) SGA and (],.4;) = (15,3) ;(ix) IBM-4 or the
spin-isospin (S, T) invariant sdIBM (here the bosons carry
(ST) = (10) @ (01) degree of freedom)[m with U (36)
SGA giving examples with (J{,.4;) = (30,6),(3,3),(18,
18), (15,15); (x) IBM-2 or proton-neutron IBM“6] with
U(12)SGA and(.4;,.4;) = (10,2). In this paper, for sim-
plicity, we consider group chains with /=3, .4 =1 and

M=3,47=3,i.e. M5 =2 situations(as in(x) above) are not

considered.
Group chains, for symmetric U(.#")irreps{./#} the irrep
labels for other group algebras in the chains and their reduc-

tions for the .#{=3 and .4 = 1 situation( hereafter called I)

are,
U) o UM=4-1) D 0(4%) D K

{ N} {n,} [w,] a > ’
n,=0,1,2,...., N, w;=n;,n,-2,...,0 or 1 (1)
and

ur) o o)

> 0(J) D K
{ N} [w] [w] a > ’

w=N,N-2,...,00r1l, w;=0,1,2,...,0. (2)
In (1,2),label(s) a for the irreps of K need not be specified

as the algebra K do not play any role in the present work.
Note that U(A) D U(AH'=N-1)@U(A;=1) and the
U(A5=1) and its irreps{ n,} , ny = N — n, are not shown in
(1) . The general one plus two-body O (4])(0(45=1) will
not exist) scalar hamiltonian built out of the Casimir operators

of the group algebras in the chains(1,2)is given by

Hl - iN[alcl(U(/V.)) +a,C(U(S=1))]+

T =L@ CGUMD) + (U A=1)) +
as Cl( U(-/;ij))cl( U(-/t{: 1))+
agCr(O(I)) + a;C,(O(IN)]. (3)

Similarly for the .#{=3 and .#3=3 situation( hereafter called
[T ) ,the group chains, for symmetric U(./#")irreps{.#1the ir-
rep labels for other group algebras in the chains and their re-
ductions are,

UA) D UA)@ UL D 0N @ 0(A) DK
{ N} {nt {n,} [w] [w,] a>’

n;=0,1,2,...,Ns;ny=n-ny,

wi=ny,n;-2,...,00rl,wy=n,5,n,-2,...,0 or 1

(4)
and
Uu() 2 o) D o) @ 0(4h) DK
{ N} [w] [w] [w,] a > ’
w=N,N-2,....,00r 1,0, + w,=w,w—2,...,0 or 1.
(5)

The general one plus two-body O (.4])@ O (.45)scalar hamil-
tonian built out of the Casimir operators of the group algebras

in the chains (4,5) is given by

H' - %[alclwum +ar C(UI)) ] +
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TNl VD) + @ UC) +
asC(UA))C(U(A)) +
26 C2(0(I)) + a7 C,(0()) +
asC2(0(A)]. (6)
In (3,6), C, and C, are linear and quadratic Casimir

invariants and their matrix elements for example are

e (uan'™ =n, (CUD)™ = 0 (ny + 47

-1) and{ C,(O (D)) = w,(w, + S =2). Given N
bosons, in the | Nnjw,) basis for T and | N (n,n,)
(w1w2)>basis for I ,the many boson H matrix for H! and
H" respectively will be always tridiagonal; the ag terms in
Egs. (3,6) generate off-diagonal matrix elements. In parti-
cular T is a generalization of the spIBM analyzed be-
fore!”*'8] while 1T is completely new. For each allowed w, in
I and(w;w,) in Il the H matrices are constructed using
the transformation brackets, given in [19], between the chains
(1) and (2) for T and (4) and (5) for I . The matrices
are diagonalized, for each member of a 500 member TBRE, for
boson numbers N = 10 — 25. Thus, in the calculations the
parameters in Eqs. (3,6) are chosen to be independent Gaus-
sian variables with zero mean and unit variance and 500 sam-
ples of the same are considered. Now we will discus the re-

sults.

3 Results for ./{=3,./37=1 and /=3, /=

3 systems and their mean-field analysis

3.1 Results of numerical calculations

Fig.1(a) and 1(b) give the probabilities, in the situ-
ation .#{=3 and 45 =1,i.e. for I as .4 is varied. In
Fig. 1(a) shown are the results for w; =0, N for even boson
number N(N = 10) and in Fig.1(b) for w; =0,1, N for
odd N(N=15) to be ground states. Fig. 1 (c) shows the

same results but as a function of the boson number N for .4,

= 14. It should be noted that the probabilities are negligiblly
small for the [ w; ] irreps not shown in the figures. In general
for even N, w; =0 is ground state irrep with ~ 65%—74%
and w; = N with ~ 25%—32% probability. Similarly for
odd N, w; =0 is ground state irrep with ~ 46%—50% ,
w; =1 with~ 18%—24% and w; = N with ~ 24%—30%
probability. They reproduce the spIBM results known be-

[5,17,18]

fore and provide a test of the present calculations.

They are also close to the sdIBM results known before ( al-

though in these studies K = 0(3) is chosen and H L'iobe a
0(3) scalar, note that w; = 1 gives L =1 in spIBM and L =
2 in sdIBM)[S-18:20)
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Fig.1. Probabilities for various group irreps to be ground

states. (a) and (b) give the variation as a function of .4/ for

fixed boson number and (c) and (d) as a function of the
boson number N. (a),(b) and (c) are for I and (d)

is for [ . See text for details.

In the situation /=3, >=3(i.e. Il ),Fig.1(d) (for
various N values with (.4{,.%;) = (9,6)) and Table 1(for
various (4],.45) with N =10,20) give the results for the ir-
reps (wle) =(00),(NO),(ON). Here only even N is
considered. It is seen that in general (w,w,) = (00) is
ground state with ~ 50%—55% and (w,;w,) = (ON) and
(NO) each with ~ 20% —24% probability. The probabilities
for other ( w;w,) irreps to be ground states is negligiblly
small. Before giving a mean-field analysis of these results
some remarks are in order. In sdgIBM with (4{,.45) = (9,
6) ,for 7-soft nuclei the (wlwz) = (ON) is expected to be
the ground state but,as seen from Fig.1(d) ,random interac-
tions give this irrep only with ~ 20% probability. Therefore
random interactions are not good for sdgIBM for (J{,.45) =
(9,6). However for (J],.45) = (14,1) (this system is used
recently in phase transition studiesm]) ,the U(14) irrep [0]
occurs, for even N, as ground state with ~ 70% and thus ran-
dom interactions may be useful here. Another example is, in
IBM4 with (J],4) = (3,3) the (w;w,) = (ST) = (00)

irrep is ground state with ~ 50% probability. However in real
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nuclei this irrep is expected to be the ground state and there-
fore in IBM-4 one can use random interactions but a regular
part enhancing the probability for ( ST) = (00) should be
added.

3.2 Mean-field analysis

Bijker and Frank''®*! carried out a mean-field analysis
of sp and sd IBM’s to give a quantitative understanding of the
probabilities, with random interactions in these models, for a
given L to be the ground state. We will follow this approach
with suitable extensions to describe the results found in Fig. 1
and Table. 1. We begin with I,i. e. .{=3,45 =1. The
A5=1 gives s bosons(with angular momentum [ =0). Simi-
larly .#{=3 gives bosons carrying .#{ degrees of freedom and

they can be thought of as bosons with I = [, I,, ..., [,
2:=1(2li +1) = . Just as in [20] ,a one parameter H is

considered(with a; and ag terms in(3)),

1 A 1 .

H:Wcosxnl +msmx$+s_ ,S, =sTst=
25 by, s = (8N (1)
~ T T

In (7)) -n/2< ¥ <37/2 so that all attractive and repulsive
interactions are included. The ground state shapes and hence
the ground state w, are determined by minimizing the energy

functional for the axially symmetric coherent state(CS) ,

L <
xj=— >, bl,0. (8)

r i=1
In Eq. (8), - 7/2< a< /2 and it gives for example cor-
rectly the CS used for sdgIBM in the past[m] .
functional E (¢) = (N a |l HI N a) = cosxsinza +

The energy

%sinxcos@a. The minima of E(a)and the corresponding

shape parameters a of the CS divide into three classes:
(i)a=0for-n/2< x<n/4,i.e. in a 3n/4 range;(ii)a
=x/2 for 3n/4 < x<3n/2,i.e. in a 3n/4 range; (iii) «
such that cos 2a = coty for n/4< y <3n/4,i.e. in a /2
range. It is seen from (8) that « =0 gives s boson conden-
sate and hence here w; = 0 and it occurs with (37/4(2x)) x
100% = 37.5% probability. Similarly a = 7/2 gives x bo-
son condensate and here, apart from a constant factor, £ =
- sinyw;(w; + 4{—=2) where w; = ny,n; -=2,...,0 or 1.
Then clearly, siny positive (this happens n/4 times) gives
w; = N to be lowest with 12.5% probability and siny nega-
tive (this happens n/2 times) gives w; = 0 to be lowest for
even N and w; = 1 for odd N with 25% probability. For
cos2a = coty the condensate is deformed with both s and x
bosons. It is plausible to argue that the condensate here gives
a band with L = kw;, w; =0,1,2,..., N and « =1 for
spIBM, x =2 for sdIBM, ¥ = 4 for sdgIBM etc. The moment
of inertia (.7) of these bands should follow from O (.4)
cranking (a method for this may be possible via the results in

[22]). As yet there is no theory for this and therefore we as-

INa)= 1 (cosasT+sinaxg)N|0>,
! sume that the O (3) cranking formula given in [18,20] is
Table 1. Probabilities (in percentage) for (®,®,) to be ground state irrep.

model M v N (w;w,) = (00) (w,w,) = (NO) (w;w,) = (ON)
u(7) 4 3 10 55.4 21.4 20.5
20 54 21.2 20.6
spdIBM 6 3 10 55 22.4 19.8
20 53.5 21.9 20.3
sdgIBM 10 5 10 55.3 22.9 19.2
20 53.6 22.8 20.4
spdfIBM 10 6 10 49.3 24.6 21.9

20 49.3 23.8 22

sdgpfIBM 15 10 10 53.8 2.9 20.3
20 54.4 22.4 20.5
IBM-3 15 3 10 49 27.1 19.8
20 49 25.6 20.7
IBM-4 3 3 10 49.2 22.8 22.8
20 48.8 23.2 23.2
30 6 10 50.1 28.6 18.6
18 18 10 50 23.5 23.5
15 15 10 49.6 23.6 23.6
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valid here to within a constant. Then (with J= (siny -
cosy )/sinycosy ) it is easily seen that for cos 2a = coty , w;
=0 is lowest with 12.5% probability and w; = N is lowest
with 12.5% probability. Combining all these results will give
for I for the ground state probabilities: (i) w; =0 with 75%
and w; = N with 25% for even N;(ii) w, =0 with 50% ,
w;=1 with 25% and w; = N with 25% for odd N. They
give a good description of the results in Figs. 1(a),1(b) and
1(e).

Now we will consider the mean-field analysis for II ,
i.e. for 4,45 =3 and the discussion will be restricted to

even N. Just as the x' operator in Eq. (8),let us introduce

y" and z" operators, yg - L 4 b;,,o’ Eip:l(ﬂi +1)

ﬁ i=1

1 ! .
e D24+ 1) =

~ "' _ L
= ) and z; = «/T] 21
Then the hamiltonian, CS and E(«)are,

)sinxs+S_ ,

1 ~ 1
H= cosxn2+N(N_1

N

r q
S+=S+(1)_S+(2)= Eb;.b;_zb;’ 'b; ’
i=1 : ¢ j=1 ’ 7

S_= (s, (9)
E(a) = cosxsinza + ——sinxcos2a.

( cosayg + sinazg) N

Na) =

1
/! 0 )
4

The H in (9) is same as H" defined in Eq. (6) but only
with the a, and a¢ terms. The equilibrium shapes correspond
toa =0,a = /2 and cos2a = coty with the range of y's
just as before. The o =0 gives y-boson condensate with en-
ergy E(a=0) oc - sinyw,(w; +.4=2). Then the ground
state irreps are (w;w,) = (00) with 25% and (w;w,) =
(NO) with 12.5% probability. Similarly « = 7/2 gives
z-boson condensate with energy E (a = 7/2) o -
sinyw,(w, +.45'=2) and then the ground state irreps are
(wyw,) = (00) with 25% and (w;w,) = (ON) with 12.5%
probability. In the situation cos2a = coty ,cranking has to be
done with respect to both O(.#;) and 0(.4;). Evaluating mo-

ment of inertias as before gives E to be,to within a constant,

w(w, +9-2) N wy(wy + My =2)
A, A ’

E =

(10)
(sinx:cosx)
A, =F—.
cosysiny
With n/4 < y <3n/4 here,it is seen that A, is + ve and A _
is —veform/4<y<mn/2 and A, is —ve and A_ is + ve

for 1/2 < y <3n/4. Therefore, here (NO) and (ON) irreps

will be ground states each with 12.5% probability. Combin-
ing all the results give for [l , (w;w,) = (00), ( NO) and
(ON) irreps to be ground states with 50% ,25% and 25%
probability. These numbers clearly describe the results in
Table 1 and Fig.l(d) .

In summary, the mean-field approach of [18.20) iith
proper extensions gives a good understanding of the results in
Fig.1 and Table 1 although all the results are obtained using
a constant probability for y in Eqgs. (7,9) . Extension of the
analysis to odd N for I (here the lowest (w;w,) are (10)
and (01)) and also the calculations for ./ = 2 will be given

elsewhere .

4 Conclusions and future outlook

In this paper for the first time TBRE’s preserving irreps
of group symmetries (other than O (3)),for boson systems,
are introduced and showed that the 0* dominance observed in
ground states extends to group irreps. An extended mean-field
analysis is shown to give good description of the numerical re-
sults obtained for a variety of interacting boson models. The
mean-field analysis in Section 3 is restricted to the simple
mixing Hamiltonians given by Eqs. (7,9) and in a future pa-
per this will be extended to the full Hamiltonians given by
Egs. (3,6). Similarly, in a future publication we will con-
sider O (L") ,.#"> 3 cranking so that the application of O
(3) cranking to I and II in Section 3 can be validated. At
present the justification for using O (3) cranking comes from
the good agreement between the mean-field results and those
in Fig. 1 and Table 1. It should be added that Kusnezov’s
analysis for spIBMW] , based on random polynomials, can be
applied to H' and H" as the matrices here are tridiagonal
and this will be done elsewhere. Finally, it will be interesting
to extend the present work to other general classes of group-
subgroup chains in IBM’s (see[ 14,15] for examples) and al-
so to group chains for fermion systems (as they appear for ex-
ample in the shell model'?!) . Tt is plausible that the results
of these extensions will give deeper understanding of geomet-
ric chaos and regularities generated by random interactions.

A. Arima’s talk in  Symmetries in Science XIII' held at
Bregenz in July 2003 has provided the basis for initiating the
work presented in this paper. The author thanks N. Yoshina-
ga for discussions in the Bregenz meeting and Y. M. Zhao for
very useful correspondence. This article is dedicated to Prof.
J.P. Draayer on his 60" birthday .
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