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Longitudinal Coupled Bunch Instability

in Fractionally Filled Storage Rings
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Abstract Longitudinal coupled bunch instability in fractionally filled storage rings is studied in this paper with analytic method to

derive the expression for the growth rate of the instability as well as the synchrotron oscillation frequency shift. An interesting phe-

nomenon has been found that imaginary part of impedance makes contribution to the growth rate of coupled bunch instability. This

phenomenon is contrary to that in symmetrical bunch filling cases.
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1 Introduction

Most storage rings are fractionally filled with particle
bunches by introducing bunch gaps, which is used for ion
cleaning in electron machines and for accommodating the
kicker rise time in proton machines; also, it is used for syn-
chrotron light source storage rings to produce special time
structured radiations. Those beams interact with the HOMs of
RF cavity may excite longitudinal coupled bunch instabilities .
Although, at the same average current the growth rate pro-
duced by such kind of beam is less than that by the symmetric
beams'!? which can be calculated by codes BBI and ZAP,
however, it is still very useful to analyze this growth rate in
detail for designing HOMs coupler and beam feedback sys-
tem, which are used to damp HOMs and suppress the beam
instabilities in storage rings.

The coupled bunch instabilities for the beam with equal-
ly populated and unequally spaced bunches are studied by

eigen function method'>*]

, where Thompson and Ruth solved
N,( N, is the bunch number) dimensions eigen function to
get the solution for every bunch, and a program MULTI which
follows Ruth-Thompson Theory has been written by Karl-Bane

already. Also a set of formulism given by S. A. Bogaczm en-

Received 27 March 2004, Revised 30 June 2004
1) E-mail: zhaozt @ ssrc. ac. cn

2) E-mail: jiangbc@ssrc.ac.cn

ables us to have a clear view of its instabilities and phase shift
compared with the fully filled cases, Through it we can make
insight into various optimizing schemes. And recently a pro-
gram SLIAB'! which is based on the beam energy equation
via wake forces has been developed to simulate unsymmetrical
bunch filling instability. Here in the following, a simple
method is introduced for considering the longitudinal dipole
instability of storage ring beam with unequqlly populated and
unequally spaced bunches. The cavity impedance and beam
spectrum are used to characterize the interaction between
beam and cavity. By classifying the bunch oscillation into the
coupled bunch modes. the growth rate can be easily calculat-
ed as that in symmetric case. Unlike the simulation method,

a clear physical view can be obtained here.

2 Coupled bunch beam spectrum

B bunches are assumed to be distributed unsymmetrical -
ly in storage ring, and each bunch is considered as a rigid
body with the same particle distribution, when we consider its
dipole oscillation, it can be decomposed to B normal coupled
modes (Strictly speaking,it’s for symmetrical cases). From

the shortest time interval between two bunches in the beam,
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one can find an integer M ,the smallest harmonic number of
buckets. The buckets are fractionally filled by B bunches,
their charges can be described by the normalized filling factor

ap = Qk/Qmax’k =0,1’2"',M

1,with @, = O representing &’ th bucket which is empty. In

-1. Wecan get 0< g, <

this way the beam current can be expressed as

+o M-l

r(e) = D) D) ado(t = 1Ty - kTe/M - 7)), (1)

l=-® k=0

Where Ty = 27/ w, is the bunch revolution time in the
ring. Iy(¢) is the maximal single bunch current in time do-
main. 7y is the time deviation of %k’ th bunch from syn-
chronous position in I’ th turn, here we decompose the B
bunches dipole oscillation in to B normal modes with syn-
chrotron frequency w,, . We neglect the time deviation ampli-
tude difference of the same mode among different bunches to
avoid solving N, dimensional eigen equations. So we can

write :

kL6, (2)

- M —27cu

Ty = Er cos(wyt + ko
Where 7, is the time deviation amplitude of normal
mode u, and 0, is initial phase.

By Fourier Transformation of I’ (t) we get

4@

J I'(t)e *di ~

—®

I'(w) = 1(w) + Al(w) =

4+

yoo M-l kT
J 2 Zak[lo(t - lTo - 0) - 10 X le]e j tdt (3)

Spl=-= k=0

The beam current in frequency domain can be written as

() = wolo(w) O ( Ea TN 3w — L),

l= -

(4)
_ I 4 M-1 B-1
81(w) = - 202l S e i -
l=-% k=0 u=0
log — @) + e 3 (w = kog + wy,)], (5)
T,
0z, = k(w¢wsu)ﬁ0:2nu%¢5u, (6)

Where ]0( w) is the Fourier Transformation of I,(t).
Again by inversing Fourier Transform we can get the beam

current in time domain I’(t) =1(t) +AI(s),

(1) = o E EA,,I(wn)e"‘”m‘, (7)
p= - n=0
- Eake—jZRnk/M, (8)
k=0
= (pM + n)wo, (9)
Al(t) _ .] 02 E E [ n+uw;,:[0(w;n)ej(w;"t+5") +
u=0p=-o n=0
Cn—uw;nlo(w;n)ej(w;”t_g")] s (10)

%28 %
M-1 '
C"iu — Eake-ﬂﬂk(ntu)/M’ (11)
k=0
wy = (PM + n) wy + w,, . (12)

3 Induced voltage

The induced voltage in RF cavity can be expressed in
frequency domain, where the cavity is represented by
impedance Z( ). The impedance can be decomposed into
real part and imaginary part, it can be written as

Z(w)=2Z(w)+jZ(w), (13)

In this way the induced voltage in frequency domain is

V' (w)=1'(w)Z(w). (14)

By inversing Fourier Transform we can get

+

1

V(t) = 2_7tJ "(w)Z(w)e™dw
V() + AV(e), (15)
V(i) = —2 EAz(wpn)z(wm)ew, (16)
AV(t) onz 2 2 [Cn+u pnIO(w;n)Z(w;n) X

o0 Cn_uw;,,'lo(w;n)Z(w;n)ef(“;n“"u)] .(17)

Now we consider the reference bunch with &k =0, from

Eq. (2) the normal mode can be written as

B-1
T = ZTM, (18)

u=0
7, = t,cos(wyt + 0,), (19)
7, = - w,r,sin(wyt + 0,). (20)

The k =0 bunch traverses the cavity at time ¢ = [T, +
79,0=0,1,2,...,under linear approximation, the induced
voltage is

V' (ITy + 7y9) = V' (ITy) + V' (ITy) 7y~
V(ITy) + AV(ITy) + V(ITy) 7pp. (21)

The terms can be expressed as following

i EAnI(wpn>z<w,m> (22)

Ty, =%

V(IT,) _LizAwnI(wn)Z(wpn), (23)

0p=-w n=0

AV(T,) = =2 "Eiz}[(, _

u=0p=-% n=0

jz.'u/wsu)cn+uwpn10 X
(w;n)Z(w;n) + (Tu +ji-u/wsu) X

V(IT,) =

c,,_uw;,?o(w;n)z(w;,,)] : (24)

In real notation
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VT = 2 53 D) A, () = A, 2],

per e
(25)
VT, = - %o,ig é%ﬂ?o(wm)[z‘in,il(ww) +
A Zi(w,)], (26)
AV(ITy) = Bz_l)(Kuru +Dz,), (27)
oy
K, = ZLT{%JO(WW)[ CoruiZi(wy) + CO+u,in(wm)] +
0
233 S o) G 203 + G 2,03 +
wydo(w5) (Coy Zi(w5) + Cn_u,,-Z,(w;,,))] } ,

(28)

1 -
Du = 2—wsuTo{ ws.JO(wsu)[ CO+M,,.Z,(0JW) - CO+u,iZi(wsu)] +

s M
22 E[IO(w;n)w;n(Cn+u,rZr(w;n) - Cn+u,iZi(w;n)) -

p=0 n=1

}O(w;n)w;n(cn—u,rzr(w;n) - Cn—u,iZi(w;n))] } ’

(29)

Here C,,,_,.,(A,,) and C,,,_, ;(A,,) are real

and imaginary part of C,,,_,(A,) respectively,and z, =
ru(lTO).

4 Longitudinal dynamics

4.1 Incoherent synchrotron frequency shift

When the nonsymmetrical beam is stable, the beam in-
duced field will modify the RF longitudinal focusing force,
then introduce an incoherent synchrotron frequency shift to
the particle. Assuming 7 is the time displacement of the ref-
erence bunch with £ =0, its energy gain per revolution is

OF = eVip(ITy + 7o) — eV(ITy + 74) -
U(E) + eka,Qy. (30)

Where, U(E) is the synchrotron radiation energy per
revolution and E is the particle energy, K is the longitudinal
loss factor, Vpp(t) = f/RFsin( wgpt + Py) is the accelerating
voltage provided by RF system, and Q, is the nominal single
bunch charge. In linear approximation the relative energy

change can be expressed as

. SE P . 1dU
€=, _ETo[ Vee(1Ty) = V(ITy) 1 7o - T dES” (31)
with slippage factor 7}(1' = — 7e) the oscillation equation can

be written as

. 1 dU - . .
To + 70 ETO +§7‘%[VRF(1TO) - V(ZTO)]TO =0. (32)

Solving the equation, we can get the incoherent syn-
chrotron frequency

Wi 0= Ct)s’0+ Awi’o, (33)

w0 = /%)VRF(ZTO), (34)

e

_en
wa’OETOV(lTO). (35)

DAw; o= -

From Eq. (26) the incoherent synchrotron frequency
shift can be written as
yo M
= —erE]v? E 2 wpnlo( wpn) |: An,jin( wpn) +
Ws,0E1L0 p=0 n=1
An,rZi(wpn)]- (36)

Aw; g

Here we can see that the real part impedance has the
contribution to the incoherent synchrotron frequency shift in
unsymmetrical bunch case. It is different from the symmetric

bunch situation.
4.2 Growth rate of coherent synchrotron oscillation

When the unsymmetrical bunches execute dipole oscilla-
tion, the coherent synchrotron frequency shift is introduced to
the beam longitudinal motion. The imaginary part of the co-
herent frequency is the growth rate of bunch dipole oscilla-
tion. Assuming 7, is the time displacement of the reference
bunch with £ = 0, and gy is its relative energy deviation,
from Eqgs. (21) and (30) (with V( T, + ‘L'O) replaced by
V' (ITy + 7)) we get

. . . 1dU
€ =ELTO{[VRF(1TO) - V(ITy) 1t - AV(ITy) } AT
(37)

From Eqgs. (18), (28), (29), the oscillation equation

can be written as
B-1

: Ld_U _en . en|
;{ Ty + ( T0 dE _ETODu)Tu + ETO[ VRF(lT()) -

V(L) - K=} = o. (38)

For normal modes we have

o (LdU_ep - eny
T, +( TodE _ETOD“)T“ +ET0[ Vee(IT,) -

v(IT,) - K] r, =0. (39)

The growth rate and coherent frequency shift due to
HOM of RF cavity are

_ ey
% =g, D,, (40)
e
Aw,, = K,, (41)

" 2w, o ET,
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Here w,; ¢ is the incoherent synchrotron frequency. w,,
is the coherent synchrotron frequency of reference bunch. It
can be approximately written ast’l;

wg = (u+1)w; o+ Aw,. (42)

From Egs. (28),(29),(40) and Eq. (41) we can see

that both the imaginary and real parts of impedance make

contributions to the growth rate and coherent frequency shift.

5 Some discussions

In unsymmetrical case C, ., is a complex number, But
in symmetrical case ( a,= 1),
Cosu,i=0,
Cosu,,=0if nxutHxM (H is an integer),
C =M when n+xu=HxM,
Substitute the value to Egs. (28) and (29),we get

M {wmjo(wm)z,(wm)(?(u)

ntu,r

D= oo 2 = @0l (@) 20,.) X
Z,(w;_0,,)0(8(u)) + i;[ wi (! )
Z(wy _,) - w;,uio(‘“;,u)zr(‘”;,u)’ (43)
K, = TMO{ wsJo(wsu)ZZi(wm)b‘(u) . Cl);:o,uj(w;:O,u) %

+o

Zw0;0.)8(3(w) + D[ v To(wr, )

Z(w;, ) + wpu ;) 2w )| b (40)
(45)
(46)

wy = (pM - u) wy + w,,,

Wy, = (PM + u) wy — w,, .

When considering a narrow-band cavity, the impedance
peaks at hw,,drop all the terms in Eq.(43) except one with
pM = h,u =0, and the result degenerates to Robinson Insta-

bility growth rate

M
ay = *277*[ (hwg + wy) IyChwg + wg) Z,(hoy + wg) -
2ETjwy

(hwy = wy) I hwy = wy) Z,(hwy — wyg) 1, (47)

Me
Aw, = - m[(hwo + wg) IgChwy + wyg) Z,Chawgy +

wg) + (hawg = wyg) Iy hwy = wy) Z;(hwg = wy0) 1,
(48)
Which does well agree with Alex Wu Chao’ s conclu-
sion'®! .
As mentioned above, both the real and imaginary parts

of impedance make contribution to the growth rate, we should

take a further look in physical view. Here we decompose the

wake potential into an odd function and an even function,

W//(z) = W//odd(z) + W//even(z)'

1
W jaia(2<0) = W a3 <0) =5 W (5 <0),  (49)

1
=W aia(z>0) = W (3 >0) =W (= 2<0).  (50)

After doing this, W 44(2) , W /0 (2) can sample all
the z region, which means the following bunches can also af-
fect the leading bunches (of course the total effect of
W oa(2) + Wy (z) is zero). The imaginary part of
impedance comes absolutely from W4 (z), and the real

part absolutely fromW ..,(z) (Z(w) = %V% ,as Gauss

bunch j( w) is real) . When considering bunch with k£ = 0 in

mode u, the bunch ahead has an oscillation amplitudez cos

( - wmk—ﬁ? + %) and the bunch behind has the amplitude
. ETy, = . - .
Tcos T + X . As illustrated below in Fig.2, their to-

tal W 4(z) effect on bunch with k =0 just compensated,
makes no contribution to bunch momentum change. Then we
can easily deduce that in symmetrically placed and equally
populated bunch filling conditions. The imaginary part of
impedance does not contribute to the growth rate. In unsym-
metrically or unequally populated bunch filling conditions, we

get the reversal conclusion.

— Wileven ... W/lodd
N\
NI NEPEIN
3 - zle
// / e
Fig.1. Decompose of wake potential .
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Fig.2. 0Odd parts of wake potential act on reference bunch.
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