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Abstract We consider N = 2 superconformal field theories on a two dimensional torus with central charge ¢ = 3. In particular,

we present the partition function for this theory. Furthermore, to generate new theories, we recall general orbifold prescription. At

last, we construct the modular invariant ~, orbifold-prime model.
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Introduction

|

The complete understanding of the moduli space of
N =2 superconformal field theories with central charge
¢ =3 needs a description of all its orbifold theories. The
N =2 superconformal , orbifolds were given in Ref.
[7]. When fermions are omitted from the ¢ = 3 supercon-
formal theories, one obtains ¢ = 2 bosonic theories that are

given in Ref. [8]. 7
The N =2 superconformal field theories with ¢ = 3"

are described by a free chiral scalar superfield containing
two real bosons or a single complex left (right) boson
¢’ (D=9 () 2ig()p (2)=9¢ (2) tig'(2))
(each of ¢ = 1) and two Majorana-Weyl (MW) fermions

or a free complex left(right) fermion ¢* (z) = ¢'(z) %

i (P () =3 (2) 2ig (D)) (each of (‘:%).

The action for this system may be written as

S $2(6,3¢' 3¢ + B, 3¢ 3¢ +

-1
T 2x)

YO e Y AT, (1)
In string theory language. this action corresponds to the
superstring compactification on a two dimensional torus
T = “*/A . For the two dimensional lattice A, we use a
basis fe ! € " (i =1,2). The action (1) depends on

four real parameters or moduli, the constant syvmmetric
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. 1 . .
metric G, = = e.e, on T?, and the antisymmetric tensor

2

field B, = - B, . It has N =2 superconformal symmetry.
Directly from the action, we can determine the generators
of the N = 2 superconformal algebra, the stress-energy
tensor T (z), its super partners Q' (z) = Q' (z) 2
iQ*(z) (i=1,2), and the U (1) current J(z) with
conformal dimensions h equal to 2, 3/2 and 1, respec-
tively,

1

T(z) == d¢” (z2) ¢ (2) -

| . .
TP (D -y ()Ag (o),
(2)
0" () = ¢" (D) dg" ().

I = 36 (g (1) = 5P ()G,
Similar relations hold for the antiholomorphic (right mov-
ing) generators of the N =2 superconformal algebra. They
have the Laurent expansions

T(Z) = Yv‘ I, z_nrl"
gt

- x

r=-®

JGy= N e

n=-m

and satisfy NV = 2 superconformal algebra that can be found
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in Refs. [1,12].

The partition function for the N =2 superconformal
theories with ¢ = 3 is constructed by tensoring the theory
of a complex free boson defined on a 2-dimentional torus
T? in the presence of constant background fields, with the
theory of a single complex Dirac fermion, namely

Z(t,p,2): = Z(1,p,0) Zpp(0,2).
In the following we briefly discuss how the explicit expres-
sion of Z(7,p,2z) can be formulated. The Z(z,p,0)
is the modular invanant partition function for two real bo-

son compactified on the two dimensional torus”®’,

Z(c,p)i= Z(r,p,0) = trghitgh = =
] 2 -2
T @)

2
2nia

where ¢ = e, 6 = g, + ig, parametrizes the world sheet

torus, and 7(co) is the Dedekind eta function defined as

L=
n(o) = qﬂH(l -q").
a=1
The Virasoro zero mode operators for the bosons in Eq.

(3) are given by

>0 (4)

\—i lﬂ
= Jya.a, 7[7 .

as0

L;= vai_,,a:, + %pzv

o o

The left-right moving zero mode momentum p and p in
Eq. (3) are defined as

le‘m’,

+ e '‘Bom' + 5 €

(p.p): ‘ ne '

ne o+ g Bim - em ] = (5)

p)

‘where | e | are basis vectors for the dual lattice A" of

I

A, which satisfies e;e; = 8, such that e e’ = —é—G";

the integers n, and m;, are the momentum and winding
numbers. The action of L} and L! in Eq. (4) on the
ground state | m,, m,, n,,n,), which is labeled by the

momentum and winding numbers, is given by

! 1,
I L \
o LMy, Myny, N,/ = 2]’ | my,my,n ,ny.,
Tb 1_2
LOIm.[.mz,n‘,.;h):?p | m,,my,n, . ny0,

where we have used a, | m,, my, n,,n,) =0 and @,
Im,,my,n,,n,)=0for n>0, m > 0. It is well

known'' that the momenta in Eq. (5) form four dimen-

sional Lorentzian lattice with scalar product (p,p)*(p’,
P’ )=(p+p’ - p-p’), which is even (because pP-p
=2m'n, €2 7) and self-dual (because A = A" ),
From Eq. (5), we easily write

1

p (p*) =7n,»nvj.0" + n,m,-B,,G'l + nm, +

é—m,-m/( G, + B,B,G"). (6)
In the two dimensional case, it is convenient to group the
four real parameteres (G, , G,,. Gy, and B,;) in terms
of two parameters t and p in the upper complex half
plane as follows,

G. V¢

T =7, 417, = =+ +1 55—,
: ° CZZ (’22

P p1+ip2=Blz+i~/ﬁG.

Here t represents the complex structure of the target space
torus T°, and p is its complexified Kihler structure; both
take values on the complex upper half plane; G = det
(G,). Now we write Eq. (6) in terms of r and p in the

following form,

pl = L ln, - tny - p(m, + ™m,)|?,
27,0,

P o= |n, = tn, — p(my + Tm) |*.
27,0, i i

Finally, torus partition function (3) takes the form

l N g eptmyeem |
Z(r,p) = —rg N gurm
O E T P
Il’.m’
— 1 ]ul—mz-’,}(m,.mlt\l
[/ AFYS N . (7)

The partition function for the Dirac fermion can be con-

structed by taking equal spin structures for the left and

right fermions ',

Zye(0,2) = trq"g‘ﬁgi;—{zy/n?o -
1|2t ot
TG |t G |

o), 10T
IR A

where y = €™ . Since the fermionic theorv split into
Neveu-Schwarz and Ramond sector the Virasorv zero mode

generator for the Dirac fermions in Eq. (8) is given by

!

¢ N i
Ly = Eon.d_nd,, n€ L+ 5 (NS
r g g 1 .

Ly, = Dond_,,d,. tgeon € (R).

Similar relation is true for the right moving component.
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The classical Jacobi theta functions 9,(z,a), i€ {1,2,
3,4} in Eq. (8) are defined in terms of sums and prod-

ucts as

i 1.2 1
6,(z,0) = - iE (- 1)"q’f("'7’ Tz

A= - ®

- iy%q% T1 =g -y ) (1 -y g ),

d 1 1.2 1
02(2,0) = z qi(n—jl YT =

yTat [] (- g1+ yg") (14 57 "),

N

0,(z.0)= >, g2y =

A -m

ﬂ(l -¢M+ yq"'%)(l + y"q"'%),

6y(z,0)= 31 (- 1)"qTy =

n

nd 1 1

T =g -y 1)(0 -y g 77).
Partition function for the N = 2 superconformal theories
with ¢ =3 is thus given as

Z(t,p,2):= Z(1,0) Zpn(0,2) =

2
nl~m2»p(m2§rml)

1
o ﬁl
|7 (a) 1277 X
IR
l(‘&l(z,a)
2 7(o)

{z%(z,a) 2
)

|n|-rn2-?(mzorm|) Iz

X
2

: '02(2,0)
7(a)

9.(z,a) 2
S ) (9)

2  General prescription for the orbifold con-

struction

QOur aim is to construct modular invariant 2-dimen-
sional I, orbifold-prime partition function from a given
modular invariant theory (9). To do that we now give a
brief introduction to the general procedure for the con-
struction of orbifold theories by modding out a symmetry
group G of a conformal field theory with central charge ¢
by following the articles [3—6].

Let .# be the Hilbert space of an orbifold theory. It
has two sectors, namely untwisted and twisted sector,
i.e. #= % @.# . Let us consider first the untwisted
sector of the orbifold theory. The untwisted Hilbert space
will be a subspace of the Hilbert space for the ¥ =2 the-

2%

ories with ¢ = 3. In the path integral for the partition
function this means that the bosonic fields obey periodic
boundary conditions along the space direction of the torus
and twisted periodic boundary conditions in time. So on
an orbifold, the untwisted sector boundary conditions on
the bosonic field are given as
¢* (1) = ¢* (0) + 274,
0" (o) = gp” (0) +27A,
where g € G. For Ramond or Neveu-Schwarz fermion one
has
¢ (1) =+ ¢" (0),
¢ (o) =+ gy* (0).
The untwisted Hilbert space .#, decomposes into G in-
variant and noninvariant space of states. In oder to con-
struct consistent models, we must project out the group
noninvariant space of states. In the path integral formali-
sm, projection on the group invariant states in the un-
twisted sector is represented as

1 '

REC 1
where we sum over all possible twistings in the time direc-

tion of the torus. g[] represents boundary conditions on
1

any generic fields in the theory twisted by g in the time
direction of the torus. The partition function of the origi-
nal model is simply given by Z = 1;].

The untwisted sector partition function is not modular
invariant. To gain modular invariant partition function,
we therefore need to consider the contributions of twisted
sector Hilbert space of states. For G abelian, the twisted
Hilbert space decomposes into a set of twisted sectors la-
beled by h € G, and in each twisted sector there is a pro-
jection onto G invariant states. If G is not abelian, the
twisted Hilbert space decomposes into a set of twisted sec-
tors labeled by conjugacy classes { A} of G. In the path
integral description the bosonic field obey the following
twisted boundary conditions,

¢ (1) = he' (0) +2nA,
¢ (o) = gg’ (0) + 2xA .
For Ramond or Neveu-Schwarz fermions one has
g (1) =+ hg* (0),
¢ (o) =+ gy (0),
where h and g are twists on the fields in the space and

time direction of the torus. The twisted Hilbert space .#

decomposes into G invariant and noninvariant space of
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states. To construct consistent models, we again have to
project onto group invariant states. In the path integral
formalism, projection onto group invariant states in the
twisted sector is represenles as
1 %
G,
huilg.hl=0

Zl = gD .

h
In fact, one may obtain the twisted sector partition func-
tion from (9’) by modular transformations 6 —~¢ + 1 and
g - 1/g. Thus, the total modular invariant orbifold
partition function is

Zi EI—IG—T Z

g hEC, A
(g b= 0T

(10)

3 The ., orbifold-prime model

The two dimensional N =2 superconformal 7, orbi-
fold-prime model can be constructed from Eq. (9) for ar-
bitrary 7 and p. Thus we may now produce another family
of theories, i.e. I, orbifold-prime superconformal field
theories with the same set of moduli as the N = 2 theories
with ¢ = 3 by following the general orbifold prescription
introduced in section two. The generic symmetry genera-
tors for the thoeries of interest is

(- D% I,
where the symmetry =, generated by
gy (z) =- ¢* (2).

rotations are the symmetries both the action (1)

ge® (2) = - ¢ (2),
The _,
and N = 2 world sheet supersymmetry generators (2).
Here ( - 1)% is a order two J, symmetry of any super-
conformal field theory, defined to act as + 1 on states in
the antiperiodic (NS, NS) sector of the world sheet su-
persymmetry generator, and act as — 1 on states in the
periodic (R,R) sector. The description of modding out a
general superconformal theory by ( — 1)" was given in
Ref. [2]. Here we calculate the 7, orbifold-prime parti-
tion function by twisting the super torus model (9) by the
symmetry ( — 1)% 7, or by twisting the 7, orbifold model
(see Eq. (11)) by (-1,

Z: w(r.p.2)= (- D2, Z(e,p,2) =

(- ])F'Zzz_(_d,(r,p.z),
where the complete modular invariant _, orbifold partition

function” has the form

PREME A KERR:c=3,N=2 B LK1 7, Orbifold-Prime # &
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1 9,9, |’ 9,9, :
Eﬁi jz(l(r,p) + S K t
2
l&:’?z )me(a,Z), (11)
|

where the Z,, (o,z) is given in Eq. (8). The 7, orbi-
fold partition function (11) may be written as the sum of
periodic (R,R) sector and antiperiodic (NS, NS) sector
partition functions:

R NS
ZSZ—orb = Zsz-wb + Z.Zz»orb'

where

Zgz_m, =%(Z(r,p,z) + %0;;94 2)x
1( 9,(z,0) |’ ’02(z,a)”)
20 3(0) ‘-‘rz(n—)l ¥
1( 9,9, |* 0402(2)
20 T
1( 9,(z,0)|* 8,(z,0) 2)
2090 * 7(a) ’

Z§,°$=%(Z(r,p,z)+ | 329‘ 2)x
l( 8,(z,6)|? ~19,(z,a)~2)
2 7(o) n(a) |
3|22 ] 7] )
l( 9,(z,00|° [&,(z,a)[z)
2V gy | YTy | )

By Eq. (10) the general 7, orbifold-prime partition
function can be written as

Z.:z—orb‘(r’p’Z)-_. L I]r / ob =
%(XD +(_])F'[_T] +
ID + (- DA D )

-k (-nh
The first term is simply given by the Eq. (11). Note that

the symmetry operator ( - 1) defined to act as + 1 on
the states in the antiperiodic { NS,NS) sector and as - 1
on the states in the periodic (R,R) sector. Therefore one

_obtains the following result for the second term,
2

19,9,
-on[] = —;—(Z(r,p) + 372 -
tt93c9z : ‘0402 2)
7 - 7 X
7 7

2

|

8,(z,a)!? 1(93(2.0')
7(a) | T p(0)
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102(z,a) 2 I&l(z,a) 2)
n(o) 7(a) '

By applying modular transformation to ( - 1), Dl , we

find the following modular invariant superconformal I, or-
bifold-prime partition function:
Zy =2 . -

A - orb’

; G T |2
L Z{t,pvz) Yi\2 01

\ 7[ a)

Q
—
v

(12)

One can see that twisting by ( - 1)" has a nontrivial ac-

tion on the ., orbifold model.
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