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Abstract In the light of derivative coupling models, we argue that the zero-point energy of the vacuum could not be simply thrown

away at high temperature. So here the finite contribution which is temperature dependent has been separated from it and the influence

of this correction on effective nucleon mass in nuclear matter has been studied.
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In recent years, the properties of hadronic matter at
finite temperature remain an active area!” . The QHD
(quantum hadrodynamics) model'*’ , proposed by Walecka
in early days, is the main theory in this area. It has led
many interesting and important theory results in describing
finite nuclei and the properties of nuclear matter at both
zero temperature and finite temperature. For example,
binding energy, saturation density and phase transition of
good predictions in

experiments, such as, noncentral spin-orbit splitting in

nuclear matter. It also gives

finite nuclei. However, this model has its shortcomings.
For instance, the effective mass of nucleon in nuclear
matter at moderately high density and/or temperature
becomes very small, or even negative if A particles are
included> . In order to avoid this problem, Zimanyi and
Moszkowski have proposed models (ZM) for hadronic
matter differing from the Walecka model only in the form of
the coupling of the nucleon to the scalar meson'® . After
that, improved ZM models or derivative coupling models
have been developed *' . These models give better results
than Walecka model. Recently, variants of the ZM models
have already been applied to investigate many physical
problems, such as, multilambda matter properties, neutron
star, A-excited nuclear matter and some thermodynamical
properties of nuclear matter' " .

In the study of nuclear matter at finite temperature,
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the effective nucleon mass is an important quantity. By
applying ZM models, many authors have discussed the
temperature and density dependence of the effective

1.7.91 .
As in

nucleon mass at low and high temperature
Ref.[1], the temperature has been extended to 400MeV .
However, they all neglected the zero-point energy of the
vacuum. As it is an infinite energy shift of vacuum which
is not measurable, this energy shift has been regularized to
zero. That is to say, it has been thrown away. But we find
that there is temperature dependent part in the zero-point
energy, it could not been simply thrown away. We argue
that the finite part relating to temperature should be
separated from the zero-point energy. And we think that
this part has nontrivial contribution at high temperature. In
this paper, we name this finite part as the zero-point
energy correction. The purpose of our paper is to study how
this zero-point energy correction influences the effective
nucleon mass in ZM models. As we know, the ZM models
are not renormalizable. The zero-point energy correction
here is not acquired through renormalization. The
procedure is first to subtract the pure vacuum contribution,
then to separate the finite piece which is temperature
dependent as the zero-point energy correction.

Since ZM models have been discussed in detail in past
literature™®”", here we will only present the Iagrangian

obtained after the proper rescaling of the fields" :
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where

m = | e ] 2)

M
¢,0 and w are the fields of nucleon, ¢ and w mesons
respectively; M is the nucleon mass and F,, = 9, w, -
models: Walecka, a =0,8=0;ZM,a =0,3=1;ZM2,
a=1,8=1;ZM3,a =2, =1. Here for simplicity, we
just consider two of them: the ZM and ZM3 models.

d, w,;a and B have the following values for the different

The energy density € of the system can be obtained
as usual by the average of the energy-momentum tensor.
If the vacuum contribution is neglected, after mean field

approximation, we can write
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This is the usual result given in past literature''"”’ . Here
Y is the degeneracy factor (for nuclear matter ¥ =4); n,
and n, stand for the Fermi-Dirac distribution for baryons
and antibaryons respectively. E (k) is given by E(k)
= vk + M"* with the effective nucleon mass M"~ = M
-m’ g,;. ¢ is the net baryon density. We have intro-
duced € = gz,Mz/mi and C’ = giMZ/mi,. Now we
want to consider the vacuum contribution. Then the pure
vacuum contribution of zero temperature must first be sub-
tracted off. Thus,

€ = g + Ac,,, (4)

where

4
B =~ (any

fd“k[/k2 s MV ML
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Ae,, is the zero-point energy[llj . it represents the differ-
ence of energy of a filled negative energy Fermi sea of
baryons with mass M~ and that of a filled negative energy
Fermi sea of baryons of mass M. If Ae,, is regularized to
zero, we recover the usual result in past literature. But it
is obvious that the first term of Ae,, in Eq.(5) is temper-

ature dependent. Simply throwing it away is not proper.

ek

So we want to separate the finite contribution of Ae,,,
which is temperature dependent. From Ref. [11], we
know that the original form of Ae,, could be written as

1
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(6)
here tr indicates a trace over the matrix indices. If we in-

troduce a dimensionless variable x = k/ M and consider,

M m’ g,
T'—' = l - M = 1 - 77‘ (7)
then,
itl’ ' 4 0 0 ] o l S
e = - (ZR)AJd ¥ [7,,1" -1+ 7y -1
(8)

As 7 is small, the term in square brackets could be ex-
panded in a power series,
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Insert it back to the Eq.(8) and notice that,
oo (=)
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Ax" Hp(ya - 1)
Then a partial integration on x° will reduce the integral in
Eq.(8) to the form

itr 4 mﬁ (- n)*
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Through dimensional regularization, it could be seen that

(11)

only the first four terms in the sum over p are ultraviolet
divergent, and we treat this part as really unobservable
infinite energy shift of vacuum. The terms with p = 5
have enough powers of x downstairs for convergence. This
is the finite energy shift which is temperature dependent.
So we just take this finite part as our zero-point energy
correction . Through calculation, we find that the final ex-
pression of this correction is formally the same as the re-
sult derived by Ref. [ 10], which is, however, in the
light of the Walecka model . So the zero-point energy cor-

rection can be written as

L[ ) e L4
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But one must motice here, for ZM models, M" = M -

L
-
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m" g,6=m" M. Thus the resulting mean-field equation

of state, including the zero-point energy correction, is

-
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In order 1o get the effective nucleon mass, one can mini-
mize e with respect to m~ . Thus we obtain the self-con-

sistent equation of m ",
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where the dimensionless variable x = [—:;— has been used.

This equation can be solved al given temperature and
chemical potential to determine M~ . Here, for ZM mod-
el, C;=169.2,C.=59.1;for ZM3, C; =443.3,C., =
305.5'' . Then we can study temperature and density de-
pendence of M’ with the zero-point energy correction,
and compare them to those without this correction.

In Fig.1 we show M as a function of T at zero net
barvon density for ZM and ZM3 models. The correction
acts lo raise the value of M~ at given T. At moderately
high temperature, the changing effect is remarkable. For
ZM3 model, when T =250MeV, AM™ =M - M’ =
20MeV . (The subscript ¢ means “with correction”.) And
the separation of ZM3 model is more remarkable than that
of ZM. For both models, the higher the temperature is,

the more obvious the separation is . This means the vacuum
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Fig.1. The effective nucleon mass in nuclear matter
as a function of the temperature at p = 0.
( Dashing line stands for with correction; solid line

without correction. )
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contribution is more effective at high temperature. It is
accordance with our understanding of the vacuum.

In Fig.2 we show the behavior of the effective nucle-
on mass with net baryon density at different temperature
for ZM and ZM3 models. When temperature is low, the
curves with corrections are not so different from those
without corrections. When temperature is high, the cor-
rection acts to move the whole curve upward. It is not dif-
ficult to understand. As in Eq.(8), Ae is positive defi-
nite, and the whole energy spectrum is shifted upward.
So is the mass spectrum. At given temperature, the mass
shift in ZM3 model is more remarkable than that of ZM.
Moreover, the mass shift is density dependent. But it is
interesting that, at low temperature, the mass shift in-
creases with density increasing; when temperature is
raised , the mass shift at low density increases more rapid-
ly than that of high density. Over some critical tempera-
ture, the mass shift will decrease with density increasing.
Such as Fig.2(c), for ZM3 model at T = 250MeV, the
two curves get closer to each other when density increas-
es. Through some numerical evaluation, we find that the
related critical temperature is about 319MeV for ZM mod-
el and is about 232MeV for ZM3 model .
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Fig.2. (a) The effective nucleon mass as a function of p at T
= 150MeV. (b) Same as (a) for T =200MeV. (c) Same as
(a) for T =250MeV . (Dashing line stands for with correction

and solid line without correction for all three cases. )

In summary, in this paper we have separated the fi-
nite zero-point energy correction in ZM models, and dis-
cussed how this correction influences the effective nucleon
mass in nuclear matter. We find that at low temperature
this correction has little contribution, while at high tem-

perature it increases the effective nucleon mass remark-
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ably. When ZM models are extended to study the thermo- energy correction should be included.
dynamical properties at high temperature, the zero-point
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