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Abstract The radial equation in its standard form, which can be solved by using the threepoint central difference method from cen-
tral two points towards outside point by point, is reduced from Schrsdinger equation or from the low energy approximation of Dirac

equation . In this paper, a method for solving the radial equation of the bound state to get the binding energy and the radial wave func-

tion is given, and the binding energies of the ground state (GS) of several - hypemuclei are calculated .
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1 Introduction

In many fields, such as quantum mechanics, atomic
and nuclear physics, how to solve the radial equation to
get the eigenvalue and the eigenfunction of the bound state
is always encountered. Among this kind of equations only
a few of them can be solved analytically, and most of
them have to be solved with numerical method. In this
work we introduce a very useful numerical method with
which the radial equation of the bound state can be
solved. As an application, the binding energies of the
ground states (GS) of several £~ hypemuclei are calcu-
lated and analyzed .

2 Formulae and methods

The motion of a particle with spin 1/2 (electron, nu-
cleon, hyperon, and so on) in a central potential field is
governed by the Schridinger equation

[_ zh_'uvﬂ, V(r)]‘I’(r, ¢) = e¥w(r, %), (1)

or by the Dirac equation
[ea - p+ Bluc® + V,(r)) + V.(r) +
V.(r)]¥(r,t) = E¥(r,?). (2)
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In the case of a hyperon moving in a hypemucleus, the
potential in the Schrodinger equation can be written as
V(r) = V. (r) + V,(r) + V.(r), (

where
U
V = — cen
en(T) —Pm'op.,.,,(r)
is the central potential,
AU
v, oAl
(r) P.o.o"[(j j+
d
11+ 1) - 314) S0
dr
is the spin-orbital coupling potential
V.(r)(MeV) =
|»1.44097SZEZ/r if r> R, (fm)
! 2 (6)
{0'7;—0488ZEZ(3 - %) if r < R.(fm)

is the Coulamb potential, p,(r) takes the Woods-Saxon

p(r) = Px.o/[l o (e 2]

Al=(h/m,c) =2.0fm*, R, =r, A", i =cen, so and

form

¢, € = - B, and B denotes the binding energy. Assum-
ing

v(r, ) = u (r)

Xin(0,9,8), (8)
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and separating variable r from ¢, ¢ and §, we obtain

the radial equation
wy(r) = Ay (P u;(r), (9

where
4,(r) = ﬁl;—l) *2;%[’“ v(rl. (10)

In the Dirac equation, @ and 8 are Dirac matrices, E =

uc’ + € = uc* — B is the total energy,

; - Ul
l,(r): ] (T—R') (11)
+ exp| —
is an attractive scalar potential and
U,
V.(r) = TR (12)
1+ exp( )

is a repulsive potential (time component of the four vector

potential ), and V_(r) is the Coulamb potential taken as

that in the Schrbdinger equation. Dirac spinor ¥(r, §)

can be divided into two Pauli spinors G(r, {) and
F(r, ¢). Assuming

V.(r) = V.(r) - V(r) - V.(r), (13)

V. (r) = V,(r) + V,(r) + V.(r), (14

D(r) = E+ pc® + V_(r), (15)

v D(r)

G(r) = u, () ym(0.¢,8), (16)

and separating variable r from §, ¢ and {, we can also

obtain a radial equation similar to Eq.(9) except

A (r) = &;Ti) + %‘[B’ + V. (r)+ V. (],
(17)
with the central potential
V. (r) =V, (r)+ Lz +
2/16'
RAp 1
E[??(V* (r) - BY(V_ (1) - B) -
D(r) D(r) l(D'(r))z] (18)
D(H ~2D(H T A\Dn )
the spin-orbital potential
_ _li . D' (r)
V.(r) = - 2#[(;(1 + 1D =+ 1) - 3/4) HES
(19)
B = B - B/2uct, D’(r)=d12i(r'),

rir)= dﬁ-zj)r(r).

There is no first order differential quotient in the ra-

dial Eq.(9), thus it can be solved by Gowell central dif-
ference method (the corresponding cut-down error is
0(h%)). Gowell three-point recurrence formula can be
writen as
u(r.) =
[2+ 2ra, 0] wn) - [1- Ean] w0
W .

1- ﬁAg(r“,)

(20)
with r, = th, h =0.1fm, i =0,1,2, -+, and starting
conditions

u; (0) = 0, u,(h) = A"',
A;(0)u,; (0) = lim é(‘l; D 28, . (21)

The detailed Gowell formula is derived in the appendix.
The radial Eq.(9) and the Gowell three-point recurrence
Eq. (20) can be used in both the scattering and the
bound state problem. In scattering problem, for a given
incidental energy ¢ ( E for Dirac equation), the radial
wave function can be derived by using Eqs.(20,21) from
central two points towards outside point by point to the
nucleus boundary. And the complex phase shift or the S
matrix element can be derived from the connection condi-
tion on the nucleus boundary between above calculated in-
ner wave function and the outer Coulamb wave function.
Then the total, elastic and absorption cross section as well
as the elastic scattering angular distribution can be calcu-
lated from the S matrix element. This is the typical ap-
proach in optical model calculation, such as in Ref.[1].

In bound state problem, for a given binding energy
B (B’ for Dirac equation), in terms of Eq. (20), the
radial wave function can also be calculated point by point
from the starting conditions (21). It should be pointed
out that the calculated radial wave function is not normali-
zed, it should be normalized with certain condition that
would be different for different real problems. The method
for solving Eq. (20) is outlined as follows: If By, is a trial
value near the eigenvalue of the binding energy B, the

B(r) at

asymptotic form of the numerical solution of u

large r is given by the linear combination of a regular ( g
(By) exp ( — kor)) and an irregular (f ( B, )
exp (kor)) solutions with k5 = 27:B,/#* . Then the radi-
al wave function at large r can be expressed as

uz"(r) -_-f(Bo)exp(k()r)s (22)



Bum

because exp( — k,r)—>0. For another trial value B, , we
have
ui‘(r) = f(B,)exp(k,r) (23)
with &} =2uB,/%* . If f( B) is an analytic function (sl-
owly varying with respect to r), f(B,) can be expanded
as
f(B)) = f(By) + f(B)(B, - By) + .(24)
If ‘ B, - B,| is sufficiently small, we can only keep first

two terms. Then the derivative f ' ( B,) is given by

, f(B,) - f(By)
f (BO) = ﬁ =
u'fjn (rexp(- k,r) - u'Z,”(r)exp(— kor)
B, - B, . (25)

If B is just the eigenvalue of the binding energy, f( B)
should be zero, that is
f(B) = f(By) + f"(B)(B - By) =0, (26)
consequently,
B = B, - f(B)If"(By,). (27)
In the numerical calculation the recurrence method is used
to calculate the eigenvalue B . Let
B, — B,, uzl(r)* uzﬂ(r), B— B,, (28)
then calculate new ul,’jl (r) by Eqs.(20,21) and new B
value by Eqs.(25,27), '+, until the new and old B val-

ues approach to each other within a given accuracy.
3 Binding energy of £~ hypernuclei

In calculating the GS binding energy of the =~ hy-

pemucleus, phenomenological optical potentials in Eqs.

(4)—(7), (11)—(15), (18)—(19) are used. The po-

tential parameters are optimized by minimizing the Xz value
.1 JN(BY - BY)?

X =5 %T— , (29)

where B and B} are the experimental and theoretical GS

binding energies of k-th E~ hypernucleus, respectively,

o, is the error of B', N is the total number of &~ hyper-

Appendix A

Deduction of Gowell recurrence formula
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nuclei used in the least-square fit. There are only three
adjustable potential parameters a.,,, r., and U, for the
Schrodinger equation, and four adjustable parameters a,
=a,, r,=r,, U, and U, for the Dirac equation, r, =
1.15 fm is fixed for both cases.

The resultant potential parameters are a,, =
0.31333 fm, r,, = 0.93333 fm and U, = 26. 66098
MeV with y’ = 0.21611 for the Schrodinger equation,
and a, = @, =0.29221 fm, r, = r, =0.955016 fm, U,
=218.3073 MeV and U, = 191.3731 MeV (U, = U,
- U, =26.9342 MeV, U_ = U, + U, = 409. 6804
MeV) with y* =0.23336 for the Dirac equation. The ex-
perimental and theoretical GS binding energies for five
known 2~ hypernuclei are given in table 1. The experi-

mental values are taken from Ref.[2].

Table 1. GS binding energies of five 2~ hypernuclei (in MeV).

BE-
E" hypernuclei RE- -
Schrédinger equation Dirac equation
$-He 59x1.2 6.0134 5.9554
2-B 9.222.2 10.7410 10.6011
B-c 16.0£4.7 13.7277 13.5447
g-0 16.0£5.5 15.8672 15.6528
2o Al 23.2+6.8 21.5568 21.2869

It is seen from table 1 that the calculated values of
B2- by using the Schridinger equation and the Dirac
equation are very close to each other. Also the theoretical
B:- are usually quite close to the experimental values,
except those of 5- C. We guess that the experimental B:-
value of £- C may be questionable. The obtained =~ po-
tential well depth U, =26.66 MeV and U, =26.93
MeV are reasonable in comparison with previous empirical
values of 20 MeV'> and 28 MeV'* respectively, de-
duced by fitting the bhinding energies of 2~ hypernuclei in
the emulsion experiment. This = potential well depth is

about 1/2 of that for a nucleon in the center of nucleus.

The Taylor expansions of u; (r;,;) and u;(r;_,) at the point r; are, respectively, (for simplicity, we omit the subscripts § in following

formulae)
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2 3 4 s 6
u(ri,) = uCr) + he'(r) + %u"(r,-) + %u“(ri) + hﬂu“)(ri) + lhTOu(S)(r‘) + .?T()u‘ﬁ)(r,) +
and
2 3 4 5 6
w(rioy) = u(r) - h'(r) + —hi—u"(r,) - %u"(r,) + hﬂu(..)(r‘) - l—hz—oum("-) . %u'“)(r,) .o
(:t:llﬁl-tiut‘ull_\f ’
h* h®
u(ri) =2ulr) + u(r) = BB (r) + Tiu(‘)(r,») + 3—6—0"(6)“’) ¥ o

When h is sufficiently small, we have
u(r,) - 2u(r,) + u(r ) = R¥a"(r,)
with the cut-down error 0(h*), or
4
w(roy) = 2u(r) + u(r_,) = Bu(r,) + f—zu‘“(r,.)
with the cut-down error O( h®) . Differentiating Eq.( A4) twice we obtain
Ru™(r) = u"(ry) = 207(r) + w(r, ).

Substituting Eq.(A6) into Eq. (AS), we get
2
ulriy) - 2u(r) + u(r_) =~ %hzu'(r‘) + %(u"(ri‘,) +u"(r_y)).
From Eq.(9) we know that u”(7) = A(r)u(r). Substituting it into Eq. (A7), we obtain that
k? 5 h?
(1-2AcrD)utr) ~ (24 2 A ) ulr) - (1- 2AG) ) ulr).
Adding the omitted subscripts § in Eq.(A8) we obtain the Gowell three-point recurrence formula.

[2+ 204,00y - [1- B, ]G

"y(’nl) = p)
1~ ?_2’411('“1)
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