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Ground State Characteristics of the Light
Nuclei with A <6 on the Basis of the Translation
Invariant Shell Model by Using
Nucleon-Nucleon Interactions

S.B.Doma"

(Mathematies Department , Alexandria University , Alexandria, Egypt)

Abstract  Phenomenological nucleon-nucleon interactions consisting of central, tensor,
spin-orbit and quadratic spin-orbit terms, with Gaussian radial dependence, are construct-
ed by varying their parameters in order to obtain the best fit between the calculated and
the experimental values of the binding energy, the root mean-square radius, the D-state
probability , the magnetic dipole moment and the electric quadrupole moment of deuteron .
The ground-state nuclear wave function of deuteron is expanded in terms of the transla-
tion-invariant shell model basis functions corresponding to the number of quanta of excita-
tion 0 << N <<10. Moreover, the binding energy, the root mean-square radius and the mag-
netic dipole moment of the nuclei °H, ‘He, *He and °Li are also calculated by using the new
interactions. The wave functions of these nuclei are expanded in terms of the basis func-
tions of the translation-invariant shell model with N = 10 for the first two nuclei, N =7
for’He and N =6 for°Li. Furthermore,the role of the three-body force is investigated for
the triton nucleus. The obtained results are in good agreement with the corresponding ex-

perimental values.
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1 Introduction

One of the most interesting concepts of nuclear physics is to understand the nature of the nucle-
on-nucleon interactions and to explain the properties of complex nuclei in terms of these nuclear
forces. The description of nuclear systems can be attempted by developing relevant macroscopic or
many-body concepts, models, and parameters in terms of which a satisfactory treatment of complex
nuclei could be sought. In one approach of the study of effective interactions for light nuclei the
many-body theorists try to deduce from the bare nucleon-nucleon force the effective interaction ap-
propriate to a particular model space in a particular nucleus. In the other approach work continues
with simple empirical effective interactions designed to fit many-body data in specified model space .
One hopes eventually that these two approaches will agree in their effective interactions.
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The bare nucleon-nucleon force contains a dominant central force, a tensor force, which is un-
doubtedly present in any interaction, a strong two-body spin-orbit force and a quadratic spin-orbit
force. In the general case of many-particle systems, after the deuteron, it is necessary to calculate
matrix elements of two-particle operators by using many-particle wave functions. This can be simpli-
fied considerably by introducing the fractional parentage coefficients which enable us to represent the
wave function of a system of A particles in the form of products of two wave functions: the first repre-
senting the system of A-2 particles and the second representing the system of pair of nucleons,in the
all possible configurations of this decomposition.

The aim of this work is to construct a simple phenomenological nucleon-nucleon interaction giv-
ing an acceptable fit to the ground-state characteristics of deuteron and reasonable properties for fi-
nite nuclei. So,we started with the solution of Schrodinger’s wave equation for the ground-state of
deuteron by using nucleon-nucleon interactions consisting of central , tensor, spin-orbit and quadratic
spinorbit terms with depth and range parameters so chosen in such a way to reproduce good fits to the
ground-state chracteristics of deuteron, namely the binding energy, the root mean-square radius, the
D-state probability, the magnetic dipole moment and the electric quadrupole moment. For the radial
dependence of these terms we take sums of Gaussian functions which are useful for calculations in
nuclear physics because they simplify the calculations in both the harmonic oscillator shell model""
and the refined cluster model™® in which all wave functions are approximated essentially by Gaussian
functions. The potentials which gave results in good agreement with the corresponding experimental
values of deuteron are used to calculate the binding energy, the root mean-square radius and the
magnetic dipole moment of the *H, “He, "He and °Li nuclei. Basis functions of the translation invari-
ant shell model>*' with the number of quanta of excitation N = 10 for °CH and ‘He, N = 7 for "He

and N =6 for °Li are used to construct the ground state wave functions of these nuclei .
2 The Potential Model

For each two-nucleon state with orbital-angular momentum I, spin momentum § and isospin
momentum £, our potential is taken to be different,but charge independent :
V(r) =X V(r) + SuVol(r) + (I - 8) Vo(r) + LoV .(r), (2.1)
where

tsX - Cw + (_ 1)s+t+1CM + (_ 1):+1CB + (_ 1)t+1CH’
, (2.2)

S, =3(¢, *n)(o,*n) = (o, *0,), n = f

Lo = (3,,0)F - 2{(e0, D (o0, D) + (02, D (o1, D}

The indices C, T, S, L denote central, tensor, spin-orbit and quadratic spin-orbit terms. The four
functions V.(r) to V_ (r) depending on the internucleon distance r only are given by sums of

Gaussian functions

V.(r) = ijzlvaiexp(— =), (2.3)

a=0C,T,S,L.
In Eq.(2.2)Cy, Cy, Cy and Cy are the Wigner, the Majorana, the Bartlett and the Heisen-

berg constants, respectively, which satisfy the well known normalization condition'”’

Cy+ Cy+ Cy - Cy =-1 (2.4)

and the additional conditons



FoH S.B.Doma: ¥ T ¥BARETRBH B (4 <6) BB 943

CM = ZCB and CH = - ZCW (25)
for the symmetric forces and
Cy = Cy and Cy =- Cy (2.6)

for the Serber forces.

3 The Ground State of Nuclei with 2< A <6

If we add and subtract an oscillator potential referred to the center of mass of the deuteron the
Hamiltonian of the internal motion of the two nucleons can be written in the form™®
H=H,+V, (3.1)
where
2
H, - %[(Plz_mpz) +%mw2(r1 _’_2)2] (3.2)
1s the translation invariant shell-model Hamiltonian for the two nucleon system and
2

Vo= v(|r -r)) _’"“’Tz(r1 -r) = V(r) - (3.3)

is the residual interaction .
The energy eigenvalues and eigenfunctions of the Hamiltonian H, are given, with the usual

notations'® , by
EO - (N+%)hw, (3.4)
V(r,0,8,5,m,t,m) = | Nmsmtm) = Ry(r) Yy (6,8) yn 7 . (3.5)

The last three functions on the right-hand side of Eq.(3.5) are the spherical harmonic, the
spin and the isospin functions of the two-nucleon system, respectively. The radial wave function

Ry, (r) is given by

N-1+2
23 ZP( 2 * ) TSI
RM(T) = ay? We e pL%(p ), (36)
2

1
where p = &L’ ay =4/ rriuu and Lliz_z_z (p°) is the associated Laguerre polynomial. The functions

0
(3.5) are known as the translation invariant shell model basis functions for the two nucleon system.
The ground-state of deuteron has total angular momentum j = 1, total isospin ¢ =0, and even pari-
ty, with values of the z-components of the total angular momentum and the isospin equal m, = j =1
and m, = t =0. The ground-state wave function of deuteron is expanded in terms of the basis func-

tions (3.5), in the usual manner, as follows

|] =m; = l,t =m, = 0> = zcm 2 (lm,,sm,

Nbs m+m =1
3 s

where C. are the state-expansion coefficients and (Im, , sm,111) are Clebsch-Gordan coefficients

11) | Mm, ,sm,00), (3.7)

of the rotational group R, for j = m; = 1. In the first summation on Eq. (3 .7) N takes only even in-
tegers, since the ground-state of deuteron has even parity. Accordingly,s =1 and [ =0,2.

The matrix elements of the oscillator term in Eq. (3.3) with respect to the basis functions
(3.5) do not depend on the spin-isospin coordinates and are given by

( Nlm, s 1m,00 | NUm, 1m,00) = iiLiﬂ[(zzv +3)6y y -

e T

4
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VN -1 +2VN+1+38y ya -VN-IV/N+ 1+ 18y 5218000 m - (3.8)

The matrix elements of the central term V (r) in Eq.(2.1) with respect to the basis functions

(3.5) are given by
(Nlm,,1m, 00| Ve (r) | N'Um/, ,1m’,00) =

3
D Ve N
i=1

The matrix elements of the tensor term S, V,; (r) with respect to the basis functions (3.5) can

2
exp( - :TC) :N'l> X 8y 0 0 . (3.9)

‘ ’
ym, Y ml . m
[ s’ s

be calculated by writing the tensor operator S, in the form of a scalar product of two second-degree

tensors and then applying the Wigner-Eckart theorm'"’ to obtain
(Nim, ,1m,00| S, Vi(r) | NUm/,, 1m,00) = (- 1)" /120021 + 1)(10,20| I’0) x

3 2
Z I 1 1 r ,
i=1 VTi{l 2})( <Nl|exp( o7 ) |Nl>61”16""1’"'18’";"", ’ (3.10)

U T
ay - . [ 1 17.
where (10,20110) is a Clebsch-Gordan coefficient of the rotational group R, and LT 2}15 a
6j-symbol .

The matrix elements of the spin-orbit term for j = s = 1 are simply given by

3
(Nim, , 1m,00| (1 + $)Vo(r) | N'UVm’, , 1 m’,00) = — %l(l + DSV x
i=1

2
|
- §)

The matrix elements of the quadratic spin-orbit term with respect to the basis functions(3.5)

<Nl Nll> X 61/‘18”‘;”"18,"/ (3.11)

smo*
3

can be calculated by rewriting the operator L, in the form
L, =28 20 -2(1-5) -5 -1 (3.12)
so that

3
(Nim,,1m,00| L, V. (r) | N'I'm/, ,1m",00) = %1(1 + D5 -1+ DIV x
i=1

r2
_ . (3.13)

(NI |exp( ) INL) x 8t 100m; . m O,
Li !

The radial integrals in Eqs.(3.9),(3.10),(3.11) and (3.13) can be easily calculated and
the result can be found in Ref.[7].

Accordingly , the Hamiltonian matrix of the ground-state of deuteron is constructed as function of
the depth and the range parameters of the interaction and the parameter a, which is related to the
oscillator parameter %w by the relation a;’ = 0.0241 hw .

The calculations of the root mean-square radius, the D-state probability, the magnetic dipole
moment and the electric quadrupole moment of deuteron can be found in Ref.[6].

The Hamiltonian operator of a nucleus with mass number A corresponding to the internal mo-

tions of its nucleons can be written in the form'’

H=H,+V, (3.14)
where

1 A7 1 S S 2
H, = 71;,-[5;<Pi-1’f> + gma’(r, - 1)’ (3.15)

is the translation invariant shell-model Hamiltonian for the A-nucleon system and
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4 2
Vo= Z[V("i—’j’)—’;u;(’i-’jy] (3.16)
l=i<j
is the residual interaction .

The energy eigenvalues and eigenfunctions (basis functions) of the Hamiltonian H, are given,
with the usual notations,by Ref.[8]

E© - [N+%(A—1)]hw, (3.17)
|ATM ;MM = | AN{pl (W[ F1IM, 5[ F1SMTM,) . (3.18)

The nuclear wave function with total angular momentum quantum number J, isotopic spin T
and parity = can be expanded in series in terms of the basis functions (3.18) as follows
| FTMMy) = DSC ST (LM, SM | IM,) | ATM, s TsMM, ), (3.19)
r,s ML+MS=AG
where C}frs are the state-expansion coefficients and (LM, , SMs |1 JM,) are Clebsch-Gordan coeffi-
cients of the rotational group R;. In the first sum of Eq.(3.19) N is permitted to be either even or
odd integer depending on the parity of the state 7. The calculations of the different ground state

characteristics of nuclei with A <6 with respect to the basis functions (3.18) can be found in Refs.

[8,9].

4 Results and Conclusions

(67197 e have intoduced two different types of nucleon-nucleon interactions,

In previous papers
which fit the same ground-state characteristics of deuteron and have the same shape as given by Eqs.
(2.1) and (2.2),by assigning the following well-known sets of values for the Wigner, the Majora-
na,the Bartlett and the Heisenberg exchange constants: Cy = 0.1333, C,, = - 0.9333, C; =
~0.4667 and C, = - 0.2667 (for the symmetric forces), which are known as the Rosenfeld
constants™ ; Cy = —0.41,Cy = —0.41,C, = —0.09 and Cy =0.09 (for the Serber forces) ,
which are taken in accordance with the Lederer potential[“] .

The radial dependence of these interactions are a single Gaussian term in Refs.[6,7] and a
sum of two Gaussian terms in Ref.[10].

In the present paper we have started with the conditions (2.4),(2.5) and (2.6) and gave
values for each of the Wigner, the Majorana, the Bartlett and the Heisenberg exchange constants in
the range between — 1.0 and 1.0 with a step 0.0001 and considering the resulting potentials. The
radial dependence are taken in the form of sums of three Gaussian terms. The depth and the range
parameters of the potentials are allowed to vary in the following ranges. —100.0< V, <100.0 with
a step of 0.0001 and 0.4< r,<3.0 with a step of 0.0001.

Accordingly, we calculated the mimimum energy eigenvalue of the ground-state of deuteron.
The potential which gave result in good agreement with the experimental value of the binding energy
of deuteron is used to calculate the other ground-state characteristics of deuteron. The following two
sets of values of the exchange constants are able to reproduce potentials, with radial dependence in
the form of a sum of three Gaussian terms, giving rise to good agreement between the calculated and
the corresponding experimental values of the ground-state characteristics of deuteron:

case (1) symmetric forces

Cy=0.1667,Cy = —1.0000, Cy; = —0.5000, Cy = —0.3333;

case (2) Serber forces
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Cy=-0.3333,Cy= ~-0.3333,Cy = -0.1667, C,, =0.1667 .

In Table 1 we present the values of the depth and the range parameters of the two potentials D1
and D2 which belong to case (1) and case (2) , respectively,and fit the ground-state characteristics
of deuteron.

In Table 2 we present the results of calculating the binding energy, the root mean-square radi-
us, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of deu-
teron by using the two potentials D1 and D2 together with the corresponding experimental values'
and preveious results by using the OPEP plus core'™ .

Moreover, in Table 3 we present the results of calculating the binding energy, the root mean-
square radius and the magnetic dipole moment of the nuclei *H, ‘He, "He and °Li by using the two po-
tentials D1 and D2, and basis functions of the translation-invariant shell model corresponding to
number of quanta of excitation N = 10 for’H and ‘He, N =7 for°He and N = 6 for’Li. The experi-
mental values of the binding energy, the root mean-square radius and the magnetic dipole moment of
these nuclei are also given in Table 3.

Table 1. Range and depth parameters of the potentials.

Parameter Central Tensor Spin-orbit Qu. spin-orbit
Case (1) Vi/MeV 55.6949 18.2212 20.4052 16.3376
D1 ri/fm 1.6214 2.2331 0.8721 0.6555
V,/MeV -43.3347 - ~40.3772 ~ 15.7750 - 12.6626
ry/fm 0.8142 0.9322 0.6663 0.7214
Vi/MeV -18.7112 -12.7731 ~16.5520 -19.7733
ry/fm 0.6532 0.6429 1.2035 1.1042
Case (2) Vi /MeV 38.1211 - 14.5654 ~16.3244 - 28.6623
D2 r/fm 0.8387 2.9120 0.6511 1.2201
V,/MeV - 44.7741 -25.4442 ~19.3589 -32.1476
ry/fm 0.6854 1.5541 0.9201 0.8825
Vi/MeV -24.9521 35.7789 63.5471 34.0214
ry/fm 1.3564 1.5647 0.5347 1.2154

Table 2. Ground-state characteristics of deuteron.

Case Characters B.E./MeV R/fm Py pna/N.M. Qo efm?
Exper. 12! 2.22457 1.963 0.04—0.07 0.8574 0.2859
D1, fiw = 18MeV 2.2245 1.961 0.0622 0.8555 0.2944
D2, fiw = 19MeV 2.2249 1.958 0.0428 0.8558 0.2992
OPEP + Core!"! 2.224575 1.9484 0.0750 — 0.28652

Table 3. Ground-state characteristics of nuclei with 3< A <6.

Case Characteris B.E./MeV R/fm #/N.M. fiw /MeV
’H DI 8.229 1.755 3.144 11
D2 8.135 1.782 3.235 i3
Exper. 1] 8.4819 1.41—1.62 2.985! —
“He D1 27.444 1.478 — 24
D2 27.211 1.551 — 25
Exper, 4! 28.296 1.46 — —
SHe D1 26.854 1.958 - 1.767 27
D2 26.938 2.032 -1.752 29
Exper. ] 27.410 — - 1.802157 —
SLi D1 24.572 2.147 0.787 20
D2 23.996 1.986 0.769 2

Exper. ] 31.996 2.38 0.822!%] —
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It is seen from Table 2 that the calculated ground state characteristics of deuteron by using the
two new potentials D1 and D2 are in good agreement with the corresponding experimental values and
the preveious results by using the OPEP. More-over, it is seen from Table 3 that the two potentials
D1 and D2 also gave reults in good agreement with the corresponding experimental binding energy,
root mean-square radius and magnetic dipole moment of the nuclei *H, *He,and*He. Concering
the nucleus’ Li the calculated values of the binding energy and the root mean-square radius are not in
so good agreement with the corresponding experimental values as for the other nuclei since we have
used a truncated space with basis functions corresponding to number of quanta of excitation N =6
which is not sufficient to describe the ground state wave function of L.

In is well known that three-body forces are important to describe the properties of finite nuclei.
The parameters in the nucleon-nucleon potential may not be unique or there may be some redundant
parameters in order to reproduce the deuteron properties. In order to investigate these points of
view, we have considered the triton nucleus and used the following Hamiltonian operator, which takes
into consideration the three-body forces:

H=H,+V +V, (4.1)
where the first two terms in Eq.(4.1) are given by Egs.(3.15) and (3.16) and
Vo= > V(L) (4.2)
1=i<j<k

is the three-body force. For the three-body potential we have used the Skyrme [l potential[m
Vo= t,8(r, - r,)8(r, - ry), (4.3)
where ¢, = 14000.0MeV * fm’ .
In Table 4 we present the calculated values of the binding energy,the root mean-square radius
and the magnetic dipole moment of triton by using the two-and the three-body potentials. The corre-

sponding experimental values are also given in Table 4.

Table 4. Ground-state characteristics of *H by using two-and three-body potentials.

Characteristics B.E./MeV R/fm u/N.M. ko /MeV
D1 + Skyrme It 8.377 1.712 3.121 11
D2 + Skyrme [l 8.242 1.745 3.202 13

Experimental 8.4819 1.41—1.62 2.98 —

It is seen from Table 4 that the inclusion of the three-body force in the Hamil-tonian operator
has improved the calculated values of the binding energy, the root mean-square radius and the mag-
netic dipole moment of the triton nucleus. Similar calculations are necessary to investigate the role of

the three-body forces in the ground-state characteristics of the other nuclei.

The author would like to thank the referee for his valuable comments and directions .
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