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Antibunching Effect of k-Boson g-Coherent States

WANG Zhong-Qing
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Abstract The antibunching effect for the eigenstates of the g-deformed annihilation operator at(k=3)is

investigated . Using the numerical method, we have studied the influences of the g-parameter deformation on
the effect in the case of k = 3. The results show that the eigenstates of a: exhibit antibunching effect when
x=1z1%, i.e. the intensity of the oseillator in g-deformed coherent state, is in values of certain intervals,
and the effect is evidently influenced by the values of parameter g. When the intensity of the g-deformed
light field is changed stronger gradually, the fluctuation of the photon number in the light field is changed
between the classical (or quantum) and the quantum (or classical) properties altematively.
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1 Introduction

In the past few years, much work has been devoted to quantum group versions of usual Lie
(super) algebras, i.e. quantum groups, and their applications to many domains in physics and
mathematical physics''™" . These algebrs may be viewed as deformations of classical Lie algebras,
depending, in general, on one or more parameters. The representation theory of quantum algebras
with a single deformation parameter ¢, has led to the development of q-deformed oscillator alge-
bras''** . Their annihilation and creation operators satisfy the quantum Heisenberg-Weyl algebra ( ¢-
HWA) . On the other hand, the connecting of coherent states and quantum groups to get the Glaub-
er-type q-coherent states ( g-CSs) of the g-HWA have been well studied by many authors ** " . I
Refs. [9,10], the even and odd ¢q-CSs representations were constructed, and their optical statistics
properties were studied™® " . The even and odd g-CSs are the eigenstates of the square (alq) of the
g-annihilation operator. In 1993, the eigenstates of the operator a: were investigated by Kuang et
al''> . The states are the k-boson g-CSs. More recently, the quantum statistical properties ( Nth-
power squeezing and antibunching effect) of the eigenstates were investigated by Wang et al'™ .
Based on these work, in this paper we investigate the antibunching effect of the states, and use nu-
merical method to study the influences of the g-deformation on the case of k = 3.

2 The k-boson g-Coherent States

As is well known, the q-HWAm is generated by g-creation operator a, , the g-annihilation

operator a, and a g-number operator N . These operators satisfy the following commutation re-
lations”" :

aa, - qaja, = ¢, (1)
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[ [Vq ’ a; ] =
where ¢ is a deformed parameter. In what follows we shall concentrate on 0 < ¢ < 1; the range 1 <
q < © then corresponds to the replacement q«»q ' throughout. The operators a,, a, and N, act

on q-Fock space {1n),, n=0,1,2,1}:
a, I n), =/[n], 1 n-1),, (3)
a; lny, =/[n+1]l, 1n+1), (4)

N,lnd, =nln),. (5)
is defined as [n],

In),,:

(¢" - q¢")M(qg-4¢"), and In), is defined as
(a;)"
VInl?
where the g-factorial [n], ! =[n] [n-1],-[1], and defining [0],! =1. The g-Fock space

construct a complete Hilbert space, thus the unity is written as

=2|n>w<nl. (7

The k-component (k is an integer and k=3) ¢-CSs were given by '>

The g-number [n]

q

10),, (6)

kn ¢t

_N(zk)zm

where N, (z,k) are the normalization constants and z is a complex number. It is easy to prove that

Izykvi> Ikn+i>q9(i=0yl,29“.vk-l)v (8)

the k states of Eq.(8) are all the eigenstates of the operator a,(k=3) with the same eigenvalue

. Taking account of the normalizing conditions, the normalization factors can be calculated as fol-

lows:
Nqi(z’k) = A—I/Z(I |2) k) (l = 0,1’23”',1‘ - 1)7 (9)
Irnon
A,(x,k):nzso[kn+l , (i =0,1,2,,k=1), (10)

where we have let 121 = x corresponding to the intensity of the oscillator in g-deformed coherent
state, which reflects the intensity of ¢-light field. Therefore, the general expression for the k-boson
g-coherent states are expressed as

knox
|z;k9i>q=A,—”2(' | vk)z Ikn+i>q'(i=Ov1929“'vk_1)9

"e0 «/Ikn + 1 '
(11)
where A (x,k)(i=0,1,2,"-,k - 1) are given by Eq. (10).

3 The Antibunching Effect of the k-Boson ¢-Coherent States

3.1 The Antibunching Effect of the Eigenstates of the Operator a:

It is well known that, if the normalized second-order correlation function of a light field"*
g7 (0) < 1, 0ne says the light field exhibits antibunching effect. It is a nonclassical property of the
light field. In a similar way, we may introduce the second-order g-correlation function for the g-de-
formed light field
L1 aal 1),

|q<| a,a, ),

2. (0) = (12)
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Substituting Eq. (11) into (12), and taking account of Eq. (3), it is straightforward to eval-
uate the second-order g-correlation function for the k eigenstates of a: , respectively
K2,k,01 al’a’ | 2,k,0), AgAi,

@
0) = = , 13
£1.0(0) 1,{z,k,01 ala, | z,k,0), I’ A (13)
(z,k,11a}’a} 1 z,k,1) A A,
%3] s iy ) 136
0) = ¢ B . , 14
g1 (0) I (z,k,1 la,a, | z,k, 1), I Ay ()
,k,. +2 2 ,k,' A A
g2 (0) =tk lae Vb Dy A oy (s

l $z.k,jl ala, | z,k,j}), 2 Af_l
From Eq. (10) we know that the above second-order g-correlation functions are the functions
of x, which reflects the intensity of g-deformed light field. According to the definition, we can say
that an eigenstate exhibits antibunching effect as long as the second-order g-correlation function are
less than 1 when x equals a certain value. We will prove that all of the eigenstates of a: exhibit the

antibunching effect .
According to Eqs. (10) and (13), we have

o~ 1
y Y‘——~ o km
(2 mz,f,(:/:a‘[kn]q![km—kn+k—2]q!)x fo(x)
SRR ! T a0 U9
k km .0\ -
x;)(nz.o:[kn+k—l]q![km—kn+k—1]q!)x

Considering k=3 and [n], > n, we have

7y 1 ]
S » s et |
e [kn]q![km —kn + k - 2],,! - e kb = Hkm o~ kn o+ k - 1] )

and hence f.,,g(x) > ¢q.0(x) for x 5 0, so that gf,zz) > 1 when 0 < x 1. However, when x > 1,
there surely exist values of x, i.e. 5 > fo0(x)/ @, o(x), for which the following relation holds:
@ _ flx)

0 - x"(p(x) &
From Eqs. (10) and (14), we obtain

21 (17)

k - N 1 "

@) _xmz.:')(gr;[kn+1]q![km—k"+k‘1]v!)x % fon (%)

gq.l(O),: bt n - 1
%,(%g[kn],![km—knlq!)x

eoalx)’

Obviously,
z 1 a 1
; (kn o+ 1] 1km - kn + k - 1],! < ; (kn] tkm = kn], 1’
so that f, ,(x) < ¢, (x). Therefore, g(:),(O) <x,ie. g?

Al

(0) <1, when x<1.
Substituting Eq. (10) into (15), for the second-order g-correlation function of | ;, J, i),
(j=2,3,,k-1), we have

(2 1 )+~
i\ = [kn+j—2],,![km— kn +j]q!

g (0) = —

- (G =23, k- 1),
>(2 : )=
SN [kn+j - 1] km - kn +j-1] !

If x <1, then
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- (m+1) 1 ” o
™" — > (m+ x
gf,Z),(O) < %;)[]'-2]‘,![]],!1 < []—2],![}],,!,,‘:0

(m+1) 1 ’
;;(Hm+j-lLUZ ([j -1,
and
;}(m + 1™ = (]—_1?—7 .
Therefore, when x <1, we have
(2) [j'l]q 1 .
8, (0) < 7. =AY L= 2,3,k - 1), (20)

As long as x is small enough, the right-hand side of the inequality (20) can equal 1 or less
than 1. Practically, if ' <1 - ([j-1],/(;1,)", then [j - 11,140;1,(1-2") 1< 1. For ex-
ample, when k =3, taking ¢ = 1.0, in the range of 0 < x <0.664; taking ¢ =0.5, in the range
of 0< x<0.716; and taking ¢ =0.01, in the range of 0 < x <0.965 ( Obviously, if g—>0, the
range is 0 < x < 1), the second-order g-correlation functions less than 1, i.e. g2 (0)<1(j=2,
3,-,k-1). As a result, in the range of 0 < x < 1, there surely exist values of x for which the
following relation holds:

g2 <1, (j=23,,k-1). (21)

Therefore, the relevant result in Ref. [13] is not precise, because that states [z, k,;j AGE
2,3, ,k - 1) exhibit antibunching effect not only when x—>0. In fact, the states |z, k 0, (=
2,3,-,k ~ 1) can show antibunching effect in the range of x > 1. It will be proved by numerical
study in the following subsection.

3.2 The Numerical Study for the Antibunching Effect of the k-Boson ¢-CSs

For the sake of simplicity, the second-order g-correlation functions g2 (0)(i=0,1,2,,k
- 1) will be only studied by numerical method in the case of k = 3. By the same way, the other
case in k >3 can be investigated. From Egs. (13)—(15), tahing k =3, we obtain
g5(0) = A A AL, gB(0) = A AJAL, g0h(0) = AgAJAT. (22)
We numerically calculate the second-order g-correlation functions Eqs. (22). The relation of
22 (0)(i=0,1,2) varying with x, or the intensity of g-deformed light field (g-LF), forg=1.
0, 0.5 and 0.1 are demonstrated in Figs. 1—3. The intervals that the eigenstates ( |z, 3, iV, 1
=0,1,2) of a} can exhibit antibunching effect are listed in Table 1. It is demonstrated in Figs.
1—3 and Table 1 that these intervals are evidently influenced by the values of parameter ¢, where
the case of g = 1.0 expresses the non-deformed ones. Comparing the second to the fourth column in
Table 1, the state 1z,3,0), shows antibunching effect, i.e. g.5(0) <1, in the range of x > 1,
the smaller values of g, the larger the intervals exhibiting the effect, and the intervals shift toward
the positive x direction excepting nearby ¢ = 0.5, which may be caused by the characteristic of ¢-
variable [ n ], itself. The first interval that the state | z,3,1>q shows antibunching effect is the
range from x =0 to a certain value of x > 1, and the first interval that the state |z ,3,2), exhibits
antibunching effect is the range from x >0 to a certain value of x > 1. It can be seen from Table 1
that the number of intervals in which the eigenstates |2,3,i),(i=0,1,2) show antibunching ef-
fect may be more than one, and the second intervals as well as the latter are larger than the first
ones.
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Table 1. The intervals of the states 1z,3,i),(i=0,1,2) showing antibunching effect.
g=1.0 g=0.5 ¢g=0.1 ~
2‘40$XS6.441
. 3. MN<xg6.65, 17.84< x 5110,
t2) 4 .84 x<211.52
1230000 gao(0) <1 10.29< x<13.38 142.52< x < 408.75,
1140. 145 x5 ?
0gx<1.61,
231 2(0) < 1 O<x<1.84, 4.57T<x<12.80, 0<xx2.17,
AR AL RE 5.45< 1 <9.06 35.64 1< 102.19, 48 24 ve?
285.04< £ < 817.50
0<x=3.37,
0<x4.23, 8.95< x25.56, 0<xg21.15,
} 5 \21 0 )
123200 £32(0) <1 7.86<x<11.45 71.27 1 <204.37, 482 36 x<?
570.07<x<?
_ __Note: where the question mark “7" expresses a greater number.
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Fig.2. The function g%} (0) vs the

q

Fig.3. The function g"ql_; (0) vs the
intensity of ¢-LF x = 1212 for

Fig.1. The function g?}, (0) vs the

intensity of ¢-1F x = 1212 in intensity of g-LF = 1217 in
different ¢q.

Line 1, 2, and 3 correspond to

different ¢q . different ¢q.

The illustration is the same as Fig.1. The illustration is the same as Fig. 1.

¢=1.0,0.5and 0.1, espectively.

As is well known, if the second-order correlation function of a light field is greater than 1, the
light field exhibits bunching effect, and the effect reflects a classical property of the field, i.e. the
fluctuation of the photon number in the light field is greater than zero. If the second-order correlation
function of a light field is less than 1, the light field exhibits antibunching effect, and this reflects a
quantum property of the field. The second-order correlation function of a coherent state is equal to
1, and this is situated between the classical and the quantum properties, i.e. coherent state is a
minimum-uncertainty state. The results of the numerical method in Table 1 show that the second-or-
der correlation functions of q-deformed light field are situated between greater (or less) than 1 and
less (or greater) than 1 alternately when the intensity of the g-light field becoms stronger gradually .
It is indicated that the fluctuation of the photon number in the g-deformed light field is changed be-
tween the classical (or quantum) and the quantum (or classical) properties altemnately when the in-
tensity of the light field becoms stronger gradually.

4 Conclusion

To summarize, for particular values of x, which reflects the intensity of ¢-LF, the second-or-
der g-correlation functions g’,(0), g'%(0) and g\”(0) (j=2,3,*-,k - 1) can be less than 1.

) LA
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Therefore all of the k-boson g-coherent states show the antibunching effect. For the case of k =3,
the results of the numerical method show that the antibunching effect is evidently influenced by the
values of parameter ¢ . The state |z,3,0), exhibits antibunching effect in the intervals of x > 1.
The first intervals in which the states | z,3, i>q (i =1,2) show the antibunching effect are the range
from x > 0 to a certain value of x > 1, and the antibunching effect can be exhibited in several inter-
vals. Furthermore, the fluctuation of the photon number in the light field expressed by the states is
changed between the classical (or quantum) and the quantum (or classical) properties alternately
when the intensity of the ¢-light field becoms stronger gradually.

The g-parameter deformation of quantum algebra has been used in description for some domain
of physics and the results coinciding with experimental data '
g1, the results of this paper become the results in Ref. [16]. Therefore, the systems composed

. It is interesting to note that when

by the eigenstates of the q-deformed oscillator annihilation operator a:( k >3) have more extensive
physical connotation than that of the systems composed by the eigenstates of the conventional non-de-
formed ones. If the systems have been achieved in experiments, we may control the parameter ¢ to
control some quantum statistics properties of the light field. For this reason, it is worthy to make a
through study to the systems since they have latent and important application prospects.
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