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Preliminary Study on Ordering Problem in Potential Model

DING Yi-Bing'® GUO Peng’ LI Xue-Qian’> SHEN Peng-Nian'’ WEI Bing’
I (The Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)
2 (Department of Physics,Nankai University , Tianjin 300071, China)
3 (Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China)
4 (Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China)

Abstract While deriving the effective potential by calculating the elastic scattering amplitude hetween
quark-antiquark ,one would encounter the ordering problem. Even the hermiticity requirement is consid-
ered, various ordering schemes may still lead to different numerical results. We investigate this issue and

present the preliminary results,then make some discussions.
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The non-relativistic potential model is proved to be a plausible approach to study spectra and
wavefunctions of heavy quakoniu:l’n . Except the mysterious confinement piece in the potential which
should be input by hand, one can derive the leading-order pieces based on the perturbative QCD the-
ory by calculating the elastic scattering amplitude of the constituent quarks.

When we write down the expressions of the scattering amplitude, all quantities are in the mo-
mentum space, so that they commute with each other. However, the Fourier transformation turns k
into its conjugate vector r in the configuration space and leaves the momentum p as a derivative op-
erator, where k is the exchanged 3-momentum between the quark and anti-quark, r is the corre-
sponding distance vector. Because pand r do not commute with each other, the ordering problem in
the potential in the configuration space emerges and the problem is by no means trivial. Moreover, if
we consider higher order terms of p* in the non-relativistic reduction of the scattering amplitude , the
ordering problem is even more serious.

In the earlier work'* , the authors took a simple ordering scheme such as f(r)p® and f(r)r-
(r-p)petc.. Evidently, these expressions are in general not Hermitian. Weyl noticed this probl-
em™’ and proposed the famous “Weyl ordering” scheme . Although this scheme is a convenient one
to treat this problem, obviously it is not a unique choice and there is certain arbitrariness , so that we
cannot allege that it is the best choice. Here “best” means that the solution obtained in the scheme
is the closest one to the physical reality. Gromez presented an explicit expression when he discussed
the effective Hamiltonian for heavy quarkonium'* . In his work , the spin-independent relativistic cor-
rection in the CM frame was written as

R _1__{{ . A }}
H, = 4sz V+2mz p VP p-r rr P w“l’ (D

where V' = %/ and the subscript “Weyl” denotes the Weyl ordering of the corresponding operators
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ipV,pi %qu = I[P-'PJV‘J +2pVip; + VUP:PJ] . (2)
In Eq.(2), V; can be either V3, or V'r;r;/r.
[6]

There is another commonly adopted ordering scheme so called as the Bohm ordering scheme .
According to the scheme ,the operator which corresponds to the classical quantity f(x)g(p) is

) g(p) g = £228P) : g(p)f(x) -

Obviously, it is interesting to investigate whether there are other schemes and how different

schemes influence the calculated results for the energy gap. To be explicit, we take the Comell po-
tential

4a
3

for heavy quarkonia as an example to investigate several possible ordering schemes, and then compare

. (4)

V(r) =—$+ar,/c =

the results in different schemes, finally we raise our proposal about ordering.
First, we discuss the terms such as p*r LTr'p in Eq.(1). In general, there are 12 indepen-

dent combinations as
al=ul(e*p)(e'p), a2=ule'p)(p-e),a3=zu(p-e)(e-p),ad=u(p-e)(p-e),
aS5=(e'plu(e-p),ab=(e'p)u(p-e),a7=(p-e)u(e*p),a8=(pre)ulp-e),
a9=(e'p)(ep)u,al0=(e'p)(p-e)u,ali=(p-e)(eplu, (
al2=(p-e)(p-e)u,
where u = rV’ and e = r/r is the unit vector. Another set of 12 different combinations such as u(e
*(e*p)p) etc. can be expressed in terms of the operators in Eq. (5) with the commutative rela-
tion [xt,pj: =13, .
Apparently , operators a6 and a7 are Hermitian, and the others are not. In order to form opera-
tors that have physical meaning, we must re-combine operators al, -, al2 into Hermitian forms.
We have seven simplest Hermitian combinations. Of course, based on these combinations, one can
construct many other Hermitian forms, but these seven independent operators are fundamental ones.
They are

bl =%(al + a12)=—;—[u(e-p)(e'p) +(p-e)(preul,

1

b2=2

(a2 + alO):%[u(e'p)(p'e)+(e'p)(p'e)u],

b3=%(a3+ an)=%[u(p'e)(e'p)+(p°e)(e°p)u], (6)

ba=(ad+a9) =5 lu(pe)(pre)+(ep)(eplul,

b5=%(a5+a8)=~;—[(e-p)u(e'p)+(p'e)u(p-e)].

b6=ab=(eplu(p-e),
b7=a7=(p-e)ule-p).
Here we would set the hermiticity to be the first criterion for any ordering scheme. Below we will
discuss some other criteria which may only apply to specific potential forms.
We first consider the Coulomb part of the Comnell potential Eq. (4), because it brings up a sin-
gularity problem which needs to be dealt with carefully. Taking V = - 1/r,then u = rV' = 1/r,
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viv= - V2%=41r8(r). Consequently,

1 9 g o
bl= -2x8(r)+ b, b2=5+2x8(r) + b,
r

b3=278(r)+ B,  bd= - 2 +2m8(r) + 5,
r

b5= - 4xd(r) + b, b6=—43+3,
r
b7=3,
where
~ 1 3 1 2
b=-Ta -7 ®)

As pointed out by Landau, if a potential is more singular than 1/ r’ ,the Schrodinger equation is
unsolvable”"* . In the expressions of bs,two kinds of terms are more singular than 1/r*. They in-
volve 8 (r) and 1/r°, respectively. The first one in general is sufficiently benign in the perturbative
calculation. It provides a correction which can be calculated by using the wave function at origin.
However, the second one that shows up in 52, b4 and b6 is intolerable, because it results in non-
physical divergence in the S-states. A simple hermitizing procedure proposed in Eq. (6) cannot
eliminate these troublesome divergent terms. Indeed , the other forms of effective potentials which are
commonly used for the quarkonia,such as the linear potential or the logarithm potential etc. , would
not produce terms which are more singular than 1/ r* at r—=0 and do not cause principal difficulties
in calculations. For these potentials, the hermiticity requirement would be enough as a criterion of
ordering scheme. However, when we choose the Comell potential as the zero-th order perturbative
potential to calculate the spectra of quarkonia, some ordering schemes would produce divergent terms
such as 1/7° . To avoid contradiction with real physics, this kind of terms should reasonably be evad-
ed by selecting proper ordering schemes.

It is easy to see that besides the trivial terms 41, b3, b7, the simplest non-divergent combina-
tions can be

—;—(bZ v b4) = 208(r) + b = b3

and

1 4 ~ 2 1~
?(2b4 + b6) = —§~7r8(r) +b = ?b3 + ?b.

It is interesting to re-write the result of the Weyl ordering

1 pVipilwen = — "6(r) + Z, (9)
which is Hermitian and free of the singularity 1/r° .
To show the results from different ordering schemes, we calculate the energy gap belween the

25 and 138 states of the cc system. The resultant first order relativistic corrections from spin-inde-
(4

prr—rp in various ordering schemes are tabulated in Table 1.

pendent term - —;
2m

We also investigate the simpler term p * Vp . Its expression in the Weyl ordering scheme is
(p*V+2p-Vp+ Vp) (p*V+ Vp?)
4

2 . For the Coulomb

and in the Bohm ordering scheme reads

potential , the ordering scheme can be expressed in a generalized form

(l—a)((pzv—;V-’Q)+ ap + Vp = - (1 - a)b3 - ab,



s

where @ is a free parameter. The Weyl ordering corresponds to a = 0.5, namely

(p*V + Vp* +2p -« Vp) __(b3+Z)
7 =

THRES SR P HFEENTH A

453

4 s

and the Bohm ordering scheme requires @ = 0. For various values of the parameter a ,the numerical
results would deviate about 5—15MeV for 0< a <1 for J/.

Table 1. The corrections from the first order perturbation term - #p 'r VTr' p for the energy

gap between the 25 and 1S states of the ¢ P system in different ordering schemes.

Ordering scheme c.v. from Coulomb part/MeV | c.v. from Linear part/MeV Total c.r./MeV
b1 ~26.6 -44.0 ~70.6
b3 “13.8 ~25.4 -39.2
b _46.9 _34.7 -81.6
b7 -6.3 -16.1 -22.4
%(b2+ b4) 34.3 ~16.1 18.2
(2024 b6) 7.2 S19.3 Sz
(e pluleplpy, = bl -26.6 -44.0 -70.6
(eplule-pluy = 120 -16.5 -30.1 -46.6

-4a,
3r
energy gap in the zero-th order approximation is E,5 — E,; = 592.7MeV. c.v. denotes the value of the first order correction.

+ or with m, = 1.84GeV, a, = 0.39,0 = 0. 182GeV? . The

The zero-th order potential is the Cornell potential V(r) =

We have achieved the following observations :

(1) In selecting ordering scheme, the operators in the scheme should be Hermitian, otherwise
some absurd values would appear and produce non-physical resuits.

(2) One can expect numerical deviations from one ordering scheme to the others, the range is
about several tens of MeV.

(3) The resultant corrections and the degrees of deviations in different ordering schemes de-
pend on the potential forms in the zero-th order approximation.

In fact, the ordering phenomenon also exists in the vanational calculaton where the potential in-
cludes aforementioned relativistic correction terms. It is found,in our previous work, that the order-
ing effect is usually absorbed into the values of variational parameters via the variational operation .
Namely, in different ordering schemes, the values of variational parameters are different, but the re-
sultant physical quantities are very close”’ .

As the conclusion of this work , we find:

1. Choosing a proper ordering scheme, which originates from the Fourier transformation in de-
riving a non-relativistic potential from the quantum field theory, is important, non-negligible and un-
avoidable in the investigation of hadronic physics.

2. In the non-relativistic potential model, calculated results depend on the form of the employed
potential , the values of model parameters,and the scheme of ordering the operators.

3. A proper ordering scheme should at least satisfy two conditions: the potential operators
should be Hermitian, and should not cause the divergent disaster.

4. Phenomenological model is still a basis to study hadronic physics, because it is simple and
can grasp the major essence. For a specific potential model and model parameters, if the aforemen-
tioned two conditions are satisfied , the scheme is possible to be a proper one to fit the data. Then, in
the further study of new physics, the results would be self consistent and meaningful. We notice that
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both the Weyl and Bohm’s schemes possess the required properties,so can be applied in the practi-
cal calculations, a difference in numbers can be expected, but it is no more than a few tens of MeV .
This difference might bring up some phenomenological consequence along with the effects of other
corrections such as the loop effects and higher order relativistic corrections, as the measurement be-
comes more and more precise. So the choice of the ordering scheme indeed stands as a serious prob-
lem in the potential model and is worth more attention of theorists.
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