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Abstract The new supercharges are constructed and the weight function is defined to study the ¥ =2
one-dimensional supersymmetric quantum mechanics. Several examples are discussed in the new realiza-

tion.
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1 Introduction

While studying the dynamical breaking of supersymmetry, in 1981 Witten''* constructed a sim-
ple, but not trivial model supersymmetric quantum mechanics (SSQM)[” , namely a system of
N Hermitian supercharges Q,(i =1,2,"-, N) and supersymmetric Hamiltonian H, satisfying the

following relations:
iQHQji =2H8q‘v [QnH]=09 Q:=Q; (i =1,2,,N). (1.1)
For the N =2 case, Eq. (1.1) can be expressed alternatively,

1Q..Q.1 = 2H, =0, [0Q.,.H]=0, Q.= 0., (1.2)
by introducing
1 .
Q:—fi(ol t'Qz)- (1.3)

The problem of constructing the realization is an important one in study of SSQM. In one-dimension-
al and N =2 cases, the realization of SSQM in common use is given by the following form of super-
charges:

d +
01=[ta+W(x)]a ' (1.4)
and the supersymmetric Hamiltonian is
e = (- d W) Y, (1.5)
= 2 (—]_;7 2 30 .
where W(x) is the superpotential and the Pauli matrices are given by
.1 ) ._ (0 1 -_ (0 o0
o —2(0'1:1:162), a _(0 0), a ..(1 0). (1.6)
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Here we will study a new kind of realization, which will include more general cases of one-di-
mensional nonrelativistic quantum mechanical systems in the framework of N =2 SSQM (section 2) .
We will study the relevant Hamiltonian hierarchy and shape invariance (section 3) and some exam-
ples (section 4) .

2 New Realization

Recently we studied on a new realization on SSQM[” . Starting from the generalized super-
charges

Q, = (Mo, + Na,)d% + Ko, + Lo,, Q, = (Rya, + Saz)dix + To, + Vo,, (2.1)

where M, N, K, L, R, S, T and V are (complex in general) functions of x. From the algebra-
ic structure of SSQM, namely Q} = Q2 = H and { Q,, Q,! =0, we can obtain the relations among
those functions:

Case(a) S=M,R=-N, =-L,V=K;

T -
Case(b) S=-M,R=N,T=L,V=-K; (2.2)
Case(c) N=iM=+iS=5R, T=xL,V=z2K; )
Case(d) N=-iM=2i§S=2R, T=zL,V=xK.

It is easy to see that, the Case(b) is physically equivalent to the Case(a); and the Cases(c) and
2

(d) would lead to the H™ excluding the dif term, consequently are not physically acceptable.
x

We, therefore, could adopt the following choice of the Case(a) and then the supercharges can be
written as

Q. = (Mo, + No,) d

ot Ko, + Lo,, Q, = (- No, + Mo,)

d
a;—LO'[+KD‘2,

(2.3)
or alternatively,
0.=V2[(M-im) v k-it]er, @ =vZ[(Msim L 4 kyiL]s
* dx dx

(2.4)
The following equation of the inner product should be satisfied due to the Hermiticity of supercharg-

es, Q:: Q., or

(¢, Q%) = (Q, %) (i = 1,2). (2.5)
Where, the inner product is defined as
(&,q) = je'mp(x)q(x)dx (2.6)

and the real function p(x) is the weight function, which is to be chosen together with M, N, K
and L, satisfying
M+M.=0, N+N.=0,

(K" ~K-M"")p-Mp =0, (L ~L-N")p-N g =0.
Eq. (2.7) are derived from Eqs. (2.3), (2.5) and (2.6). It is easy to see from the above
equation that M and N are purely imaginary, satisfying

N(K" -K-M")=M(L" -L-N""), (2.8)

and p could be solved

P Eexp(J‘K—.—-%M—”dx) = exp(J L—%:N—”—dx) . (2.9)

(2.7)
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, where B, C and D are real functions of x,

then we have

0.=(ciuBlr=ao, @=(-ciidlraas (20

dx dx
In this case,
p = (2.11)
and the supersymmetric Hamiltonian
B = 1[ cd. o SO B0y,
&+ B) B«

(2.12)

O, =

242 0 H
This is the new realization discussed in this work . Obviously, supercharges Eq. (2.10) will be re-

duced to Eq. (1.4) if C=1and B=D=W.
3 New Hamiltonian Hierarchy and Shape Invariance

Using Sukumar’s method"*’, we can construct a Hamiltonian hierarchy { H, [n =0,1,2, |
where the H, can be represented by

H, = H. + E° = —AA + E° (n =0,1,2,-),
2
i (3.1)
H, = H, , + E(:—l = 7A;-|A:-1 + E?:-l (n =1,2,),
with the definitions of A
A: = C,,i+B,,, A; =—C,,i+l),l (n:O,l,"'). (3.2)
dx da

It is not difficult to find:

1) Since an arbitrary one-dimensional Hamiltonian with second order derivative can be factor-
ized as H=A" A~ + E°, and can be adopted as H,, we can always construct a Hamiltonian hier-
archy { H | including a certain Hamiltonian as H, .

2) The mth eigenvalues E_ and the mth eigenfunctions ¢ of the Hamiltonian H, are linked

by the following relations :
E} = EV' = = E'™ (m =0,1,2,, n=1,2,3,");

1
gr = 1[ES™ - ES][ES™ - BV T A, AL A giy*"
3) Two neighbouring Hamiltonians in the hierarchy, H, and H, ., (or, more exactly H, and

(3.3)

H_ ) are supersymmetric partner Hamiltonians, i.e.

H® (H: 0) (3.4)
s =lo &) 4

4) If the hierarchy | H,
H. = 3 4i(x.0)4;(x,0,), H; = 24;(x,0,)40(x0a,), (3.5)

,**1 can be parametrized by

where

A (xa)—C(xa) +B(xa), A (x,a)-——C(xa) +D(xa) (3.6)
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and the shape invariance conditions *
A' (Z,GA)A- (xya,.) - A- (xoa,._l>A‘ (x’au-l) = - 2R(an)’ an = f(au-l)’

(3.7)
or
C(z,a,) = C(x,a,) = = C(x,a,) = C(x), a, fla,,),
,,,D(x,z“o)," B(f"jao) =D(x,a|) - B(x,a,) B MR =
" D(x,a,) - B(x,a,) =~2g(x), (3.8)

D(x,a,)B(x,a,) - D(x,a,,)B(x,a,,) +
C(x)[B'(x,a,,) + D'(x,a,)] =-2R(a,).
are satisfied, then DB + CD’ and DB - CB’ are called shape invariant potentials. An arbitrary
Hamiltonian H with a shape invariant potential can be factorized in the form
Ho= 3A" (x,0)A4 (x.a,) + E = H,, (3.9)
satisfying the shape invariance conditions Eq. (3.7) or (3.8), and the eigenvalues and the eigen-

states can be easily solved:
Hy, = Ey, or Hy¢p.(x,a,) = Evg,(x,a,) (n =0,1,-),
E: = E} = n‘R E°,
co ;1 (o) + Eg (3.10)
o= P (x,80) « A" (x,8,)A" (x,8,)A" (x,6,,)¢(x,a,),
A (xva.)tllo(xya,.) = 0.

1) We take C, =1 B—l+2- ¢ D—i— ¢ (1=0,1,-+), th
CEE M E L I I T T T el
. d l1+2 e - d l e
A'—dr+ r I+ 1 A'--dr+r_l+1' (4.1

where e is to be interpreted as the charge of the electron. This example shows the super-symmetric
structure of the radial Schridinger equation of the hydrogen atom,

”’R"‘=% -di:,-%di”l(—’r]‘—”-z—fz]m:am. (4.2)
2) We take
¢=1, B="*2_w p-t_u (4.3)
then
A;:£+l+2—wr, A,'=_d%+ri-wr. (4.4)

This example shows the supersymmetric structure of the radial Schrédinger equation of the three-di-
mensional isometric harmonic oscillator,
d  2d  Il+1)

2 - +
dr” r dr
The detailed study of examples 1) and 2) has been shown in our previous work * and the shape in-

HR, = %[- W' r| Ry = ER,. (4.5)

variance was studied in Ref.[6]. Here we will study the following interesting example .
3) The Schridinger equation in a curved space.
Katayama'""* studied the Schrodinger equation in a 3-dimensional space of constant curvature
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K. The classical Hamiltonian of the harmonic oscillator is

H:l(]+lKr2)223:pg+(l——l-Kr2)_2ﬂr2 (46)
2 4 il 4
with the momentum
p.:(l+iKr2)-2d—x‘ (i =1,2,3) (4.7)
‘ 4 dt e

and then the quantum mechanical one is
1 1, 2\ < 1 1, 2)
H=-7(1+7Kr) Ea’,.+71<(1+71<r) Sy a4

i=t iml

1 2 - 2
(1-710) g, (4.8)
3 1
where 3 is a constant and r = [ E 3 )2] T . After performing the coordinate transformations
iml
x' = g(y)cosf, x* = g(y)sinfcosp, x’ = g(y)sind sing, (4.9)
where
2 1 n
ﬁtan(?ﬁy) K>0,0sys—-lz
9(y) =4y K=0,y20 (4.10)
2 1
= Ktanh(—Z—\/— Ky) K<0.y30
the Schrédinger equation, Hy, = E, ¢, , can be written as
1 & 1 . G (y) 2 ]
- 3 a—yi + 201(}/) - G(y) 3y + V(y) (/),,1 = E,,(,b,,;y (411)
where
L g 2 L
L =~ 2.5 38 smea—e ppemr P (4.12)
'gtanz(\/T(y) K>0
Viy) = 18 K=0, (4.13)
- gtanhz(v -Ky) K<O
\/%sin(ﬁy) K>0
G(y) = {v K=0 (4.14)
1._Ksinh(~/ -Ky) K<0
After separating variables
¢,.1(y961¢) = R,‘;(y)Y[(6;¢) (4.15)

we get the radial equation
1 & G(y) d Wl+1)
[ 2 d)‘z - m dy + W + V()’)]R..z(}’) = E,,R,,;()’)‘ (4.16)
For the K <0 case, let y =+ - Ky, then we can rewrite (4.16) as

& d 1U+1) 2V 2E,
[-d—x2 - 2eothy 0+ g - 2 ]Re = - R (4.17)
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We have the weight function p = sinh’ y . For example, we choose C; =1, B, = (1 +2)cothy +

/2B, V28

tanhy and D, = lcothy +

tanhy, or by parametrization in section 3, we rewrite

K K
C(X9a,1b,) = 1’
B(y,a,,b,) = (I + a, + 2)cothy - b,tanhy, (4.18)

D(y,a,,b) = (I + a,)cothy — b,tanhy,
where s =0,1,2,+--. It is easy to check that Eq. (4.18) satisfies the shape invaniance conditions
Eq. (3.7) or (3.8), in which
C(y) =1, g(y) = cothy, R(a,,b) =2b -2(l+a,),
= f(a,) a, +1, a4, =0, a, = s,

(4.19)
V2 28
- h(b) b -1, b‘,:_Tﬁ‘, .
Thus,
:%A’ (Xyaovbo)A- (X'GO‘bO) + Eg =
1[ d d 1(l+1) (25, «/2;3,) 2
Sl -5= - - X h
) P 2cothxdx+m+ e e tanh” y +
J2 E;
(21 +3) L2, |- 32 (4.20)
and is exactly solvable. Therefore
El
Hod' (180, bo) = - 20" (xr0:00) (s = 0,1,2,), (4.21)
E: E(: ] EO 0
- K" =- %= ‘ER(a“b,, _7" = 2sby = 25l - 2s(s + 1) - T" (4.22)
(/)’(Xyaoybo) oc AY (x,ao,bo)A* (X9alvb1)"'A‘ (x,a,_l,b,_l)(/)o(x,(l,,b,).
(4.23)
where
. l+a,
$°(x,a,,b,) « ﬂ;—x (4.24)

cosh™y
has been derived from A” (y,q,,b,) ‘/’O(X ,a,,b,) =0. This is the solution of the harmonic oscil-
lator in the curved space,

H‘,b‘(x’(lo,bo) = - %‘pl(x’aoybo)o

Sy LMD 28 (4.25)
=3 dxl X dy Sinhzx X X
with
2 2
202 LBy, (4.26)
where
1 1 /K’
=g xNT (4.27)

We can derive

E__E_Ql+3), 1+2) £
K K 2 2 K
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(z+2s+%)bo-2sz_’“2’12-23(3”), (4.28)

o (l+2s+%)./£4i+2/3+—12<—[(l+2s)2+3(l+25)+%], (4.29)

and ¢’ (y,a,,b,) is the same as in Eq.(4.23).
Let n=1+2s (s=0,1,2,~"5 a=1, 1+2, [ +4,-), then this solution will be changed

into another notation,

E
H‘/),.(X,ao,bo) =-#¢,(X9aosbo)) (4~30)
where
Gl xra9:bg) = Pra,(xs80.b) = ¢ (x,a0,by),s (4.31)
, 3\ /K K 3
Ean,.z,zE':(n-}-i) —4—+2ﬂ+—2—(n2+3n+—2—). (432)
If we choose
C(y,a,) =1,
B
B(y,a,) = (I + a, + 2)cothy - ,
* Y TR v e+ 1) (4.33)
B

D(x,a,) = (I + a,)cothy - < .
v - +a, +

then Eq.(4.33) satisfies the shape invariance conditions Eq. (3.7) or (3.8) as well, in which

1 F(2l +2a, + 1) K
- 2l 2 1) = ’
Rla) = glativaysa et 3420+ D5 (4.34)
a,, = fla,) = a, +1, a, =0, a, = s
The hierarchy of Hamiltonian { H, |s =0,1,2,+},
H = 24" (x,0)4" (x,0,), (4.35)

is related to the Hamiltonian of hydrogen atom in the curved space,
1 d d I(1 +1) PBeothy
Lo 4 ocothy 2 - _
”—2[ dy’ oot de"’ sinh’ y v-KI~
1__#
T = -l +2 = ), .
HO + Z[W l( + )] (l 0,1,2, ) (4 36)
The Schridinger equation

HY (x.aq) =—%¢‘(x,ao) (4.37)
is easy to solve,
E N 1 g
_?: %{R(ak)+'§-[m—l(l+2)], (4.38)
. _ g K -
E __2(l+s+l)2+-2—(l+s)(l+s+2) (s =0,1,2,-++), (4.39)
G (x,a0) c A" (y,a0)A" (y,a,)A" (x,a,_,)¢'(y,a,), (4.40)

where

- Bx ]

0 . les
(y,a,) o sinh’*'ye [
vlre) e YL/ TR+ s+ 1)
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is derived from A™ (y,a,)¢°(y.a,) =0. This solution could be written in another notation,
H‘lb»(X'aO) = Eu(;bn(X!ao)v

‘pn(X'aO): ¢I+nl(X’ao) = ‘IJ‘(X’GO)’ (4-41)
K
En=El¢1+l=E‘=_21927+7(n2_l)y
where n=1l+s+1, s=0,1,2,*; n=1+1, I +2,-- . These examples show that the realiza-

tion (2.10) can be applied to several quantum mechanical systems with a spherically symmetric po-
tential in a 3-dimensional Euclidean space as well as in a constant curved space.
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