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Analytic Solution of Ground State for Coulomb
Plus Linear Potential
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Abstract The newly developed single trajectory quadrature method is applied to solve the ground state
quantum wave function for Coulomb plus linear potential. The general analytic expressions of the energy
and wave function for the ground state are given. The convergence of the solution is also discussed. The

method is applied to the ground state of the heavy quarkonium system.
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Recently a new method has been developed by R. Friedberg, T. D. Lee and W. Q. Zhao''™*
1o solve the N-dimensional low-lying quantum wave functions of Schridinger equation using quadra-
tures along a single trajectory. Based on the expansion on 1/g, where g is a scale factor expressing
the strength of the potential, Schrédinger equation can be cast into a series of first order partial dif-
ferential equations, which is further reduced to a series of integrable first order ordinary differential
equations by single-trajectory quadratures. New perturbation series expansion is also derived based
on this method, both for one-dimensional and N- dimensional cases. Some examples for one-dimen-
sional problems have been illustrated in Refs.{1,2].

Coulomb plus linear potential has been widely applied to describe the heavy quarkonium state .
However, it is difficult to obtain an analytic expression of the energy and wave function. Here the
single trajectory quadrature method is applied to solve the ground state for Coulomb plus linear po-
tential. The general analytic expressions of the energy and wave function for the ground state are giv-
en. The convergence of the solution is also discussed. The result is applied to describe the ground
state of heavy quarkonia. Some discussions of the limitation of its applicability are given at the end.

Let us consider a unit mass particle moving in a central potential. The Schrédinger equation in
the 3-dimensional space is expressed as

[_%vu V(]| ¥(r) = E¥(r). (1)

Based on the single trajectory quadrature method'’ , following steps should be taken to solve the
problem for the ground state.

1. For the potential ¥(r), the scale factor g is introduced as

V(r) = gkv(r). (2)
First, the energy is expanded in terms of 1/g:
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E=gEy+g 'E,+g “E;+ . (3)
The highest g-power, I, in the expansion could be fixed by the dimensional consideration in the
following way: Assume the behavior of the potential v(r) approaches r* when r—0 and E, is di-
mensionless. The dimension of V* in the first term of the left hand side in Eq.(1) is the same as
[r"?]. The dimension of each term in Eq.(1), namely [ r"*] for V2 [ g'r"] for V(r) and [ g']
for E should be the same. This then gives

1= 2k (4)
T n+2
The ground state wave function W(r) is expressed as

w(r) = e, (5)

Substituting Eq. (5) into Eq.(1) a equation for S(r) and E is obtained as
T IS(r) = 3 (IS()) + V() - E = 0. (6)

Then S(r) is also expanded in terms of 1/g:

S(r) = g7Se(r) + g"7'S,(r) + g~7¥S,(r) + . (7

Substitute Eqs.(3) and (7) into Eq.(6). By equating the coefficients of each g™ ", a series of
first order differential equations could be obtained. Now the highest g- power, m, in the S-expan-

sion should be determined. The highest power of g™ comes from the second term - %(VS )? of the

left hand side of Eq.(6), which gives — é—(VSo( r))? to the first one of the series of equations.

The highest g- powers in V(r) and E are g* and g' respectively. When k > [, v(r) should enter
the first equation, as in the case of Harmonic Oscillator potentia]“'ﬂ , which requires 2m = k; in
the second equation for g~/ power, V5,°VS, should be related to E,, which gives 2m - j=1.
On the other hand, when k < [/, the first equation should be related to E, and this gives 2m = [;
"/ is then related to v(r), which gives 2m - j = k. From
the above discussion we derive the following condition:

2m =k, 2m-j=1, forl < k,2m =1, 2m-j =4k, forl > k. (8)
To ensure that { E;} and {S;} enter the equations successively, we have i = j in Egs.(3) and

(7).
For the Coulomb plus linear potential

the second equation with the power g°"

V(r) = gz(—l+/1r), (9)

r
k=2 and v(r):—%+p¢r, (10)

which gives n = - 1. From Eqs.(4) and (8) this gives [ =4 > k, whichleadsto m =2 and i =
=2. Therefore, for this potential Eqs.(3) and (7) are expressed as

E=g'E+gE +E, + g E + +g " E +,
S=gSo+S, +87°S,+8"'S + -+ g™VS, 4 an
Substituting Eq. (11) into Eq.(6), equating the coefficients of each g" term, the following series of
equations are obtained:

(VS,)* = - 2E,, (12)
VSO-VS,=%VZSo+v(r)-E,, (13)
VS, VS, = 2 VIS, - (V5 - Ei, (14)
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1 l n-1
VS V8, = 5 V'S, - 7_2_1 VS, - VS, . - E,,
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(15)

2. Following Ref.[2] the series of Eqs. (12—15) could be solved easily. Considering VS, =

ds, )
I Eq.(12) gives

S,(r) = / -2E,r.

Substituting Eq. (16) into Eq.(13) for E, and S,(r), considering Vir= % , we have

Fon 8 ) L),
To keep S,(r) regular at r =0 we have
E, =—%and So(r) = r.
This gives
ds,

VS, + VS, = o5, = H - E .S (r) = --%—,ur2 - Er.

Substituting Eq. (19) into Eq.(14) for S,(r) and E,, considering V?r =6, we have

ds, 1(1 2E,) 1 2
gl gee-TR)- gl - B - B

In order that S,(r) be regular at r =0, we have
E, =0, §,(r) = %prz.

This gives
ds
d—rz = - %qurz + %/1 - E,, 8§,(r) =- %pzf + %pr - E;r.
Following similar procedure for S,(r) and E,, introducing V?r =12r, we have
ds, 1 3u 2F,

1 3
R BEIRE e BV EE AR S h
In order to have S,(r) also regular

1
E, ‘g‘#’ S5,(r) ="_6‘l‘2r3

Then Eq.(23) becomes

ds 1 1 1
d—rg = - ,uzr + ~2—#2r3 - E,, S,(r) = - —2-;127'2 + §/127'4 =
Continuing similar argument we could reach
1 1
E, =0, S.(r) = - 7;12 + §y3r‘

3
E‘=7p2, S‘(r)=_%#3r3_%)#4r5

Now we introduce the general expression

ds
drn = E a(ln) rn-2l'un—l ,

0<l<1’l

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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then we have

Y‘ 1 a(u) a+l1-21 n-i
< (n+1-2D"
051(-3— (28)
stnz deirz% = z a(l")(n+2_21)rn71721#n71.
r r 0<I<-'2'—

Substituting Egs.(27) and (28) into Eq.(15) and comparing the coefficients of the same power of
r we obtain

e .‘.;l.x‘<§
a?’=%di%n+3—”>-%§3 D> alanm. (29)
M=li;0.i>l-n;m
To keep S,, or S,,,, regular at r =0 we have
Ezu_] = 09 Ez,, = i(1(‘.,-“-‘]/,1". (30)

2 n-1
From a;" =1 all the of” and E, for n >0 could be derived based on Egs.(29) and (30). Com-

and S, = r we obtain

bining with £, = - 1

2
RTETOE  T
E—g(-2+2g4‘2g4 + ’ (31)
2 | 1 5, 1 5,
v(r)= exp[—gr——i—,ur +6?,u r +2_g“u s
I 5. 3 5 1 s s
g agt gt ] G2
The same procedure can be performed if we define
e = gnu (33)
and solve Eq. (1) for the potential
2
V(D =-& e (34)

The derivation has been given in Ref.[2] and the result is exactly the same as Eqs. (31) and
(32) . Considering Eq.(33) we have

R (]
v(r)= exp[— gr- 2_17¢.;,-2 + 6%52'3 + z—lgezrz ~ (36)
g £ g
8ng0€3,4 _ %esra . f;‘xedfs + ]
Introducing a parameter A = ¢/g° = u/g* the energy could be expressed as
E = g‘(- % + %a‘ff{"k"). (37)

rpl

Introducing e, = %a(,,z_" 7" the energy could be expressed as

E=g'(-75+Den). (38)
Azl
This method can easily give the energy expansion series up to any order of n. It gives the possibility

to analyze the convergence of the series in details. The convergence of the expansion series of the
energy E depends on the parameter A . In fact, this series is an asymptotic one. For certain value of
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A we could only reach a certain accuracy of the energy In Table 1 the ratio of R, = le,/e,_, | for

different n is listed. From Eq.(37) we know that the ratio of the successive terms in the energy ex-
pansion series is A le /e, ., | = AR, . It can be seen that the series would be meaningful only when

; 1
A <5 This gives the limitation of the applicability of this method. It also tells us how accurate

the final result could reach for a fixed value of A . In table 2 for each order n, the A corresponding
to AR, =1 is listed. The obtained energy E/g"* for this special value of A at each order of n is also
given, together with the reached accuracy e,A" . For example, when n =11 the corresponding A =
0.052 gives AR, = 1. Tt means that the correction term increases when n > 11 and increases fur-
ther. This would finally give a divergent result. Up to n = 11 the obtained e,A" = 0.00004 which

gives the accuracy of the obtained energy E/g*~ -0.43443 for. A =0.052.
R Table1l. R.=le./e.,!|

5 [ 7 8 9 10 11 12

R, 4.5 7.36 9.67 11.62 13.35 14.95 16.45 17.90 19.32 20.72

1/R, 0.22 0.14 0.10 0.086 0.075 0.067 0.061 0.056 0.052 0.048

Table 2. The obtained energy nnd its accuracy for diﬂerent A

n 3 4 s 6 7 8 9 10 11 12

A 0.22 0.14 0.15 0.086 0.075 0.067 0.061 0.056 0.052 0.048
Elg* 0.20 0.31 0.361 0.379 0.394 0.4048 0.4130 0.4198  0.42535  0.43089
le, 1" 0.07 0.02 0.006 0.002 0.001 0.0004 0.0002 0.0001  0.00004 0.00002

Now consider a pair of heavy quark and antiquark with equal mass m and color charge ¢ and
- g, moving in a Coulomb plus linear potential. In the non-relativistic approximation the wave
function ¢( r) to describe the relative motion of the quark pair satisfies the following Schrodinger
equation :

[ 7 m/ZVZ T+xr]¢/z(r) =&y(r), (39)

where « is the strength of the linear potential. After a simple transformation, Eq.(39) becomes
Eq.{1) and with

1 1 1 1 4k €
quzzgz’ imgz E, —Z—Em'c:#orfmx:e’ AEW=?:§.
(40)
Substituting Eq. (40) into Eq.(37) the ground state energy & of the two quark system can be ex-
pressed as
1 3 4k \" 1 1 3 3 27
P 1 < (2..1)( )):— 4(__ EUE N 1_)
2™ 2*;{2“ e A I R K
(41)
For the quarkonium system the color charge q° can be related to the strong coupling constant «, as™
:_ 4
9 = 30,

For example, taking ¢° =0.5 and « = 1GeV/fm we have

A= X 6.4GeV x L.
mq m

Taking the mass of the charm quark m, = 1.6GeV, we have
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/\c = 1_6*’257 (44)
m

which 18 too large for the application of this method. If we look at the expansion series, for the
ground state of J/¢ we have

my, = 1.6GeV x 2 + & = 3.2GeV + 0.2GeV(-0.5 +3.7 - 9.4 + 105 + ---). (45)
Obviously, this expansion has a very bad behaviour. Therefore this method could not be applied to
charmnium since the charm quark mass is not heavy enough. For bottom and top quark, taking

my=~4.5GeV and m, =~ 170GeV, we could obtain

A, = 2 _0.32 and A, = A ~2.2x 10t (46)
myq m q

For the ground state of the bottom and top quarkonium we have
mg = 4.5GeV x2 + 8 ~

9.0GeV + 0.56GeV(-0.5+0.48 —0.15 + 0.22 + --+), (47)
m;= 170GeV x 2 + &, =
340GeV + 21.3GeV(-0.5 + 3.3 x 107" = 7.3 x 107 4 ). (48)

From Fqgs.(47) and (48) it can be seen that in the case of bottom quarkonium A, =~0.32, the accu-

racy of the derived energy has been improved and this method could well be applied to the top
quarkonium.
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