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Lattice for the Calculation of the Glueball Masses *
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Abstract We develop a new approach to constructing the lattice operators for the calculation of the glue-
ball mass. which is hased on the connection between the continuum limit of the chosen operator and the
quantum number J™ of the state. The spin of the state is then determined uniquely and directly in numer-
ical simulation. Furthermore, the approach can be applied to the calculation of the mass of gluehall states
with any spin. J. Under the quenched approximation, we present our preliminary results in SU(3) pure
gauge theory for the mass of 0" state and 2° ° state, which are 1754(85) (86) MeV and 2417(56)
(117) MeV, respectively.
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1 Introduction

During the past two decades, there have been extensive lattice calculation of the glueball spec-

% or in Hamiltian scheme'® . Most of previous works use two key

troscopy in Lagrangian scheme''™
steps: one is the choice of glueball operators with certain quantum number J™ based on the method
introduced in Ref. [1] and the other is the application of variational principle. Meanwhile, with a
great amount of the improvement, such as fuzzying and smearing, etc., these approaches work well

[1=5" is based on the corre-

and the errors are under well controlled. The choice of lattice operators
spondence of the irreducible representation R of the cubic point group and the representation J of
the rotation group. However, since the correspondence between R and J is not one-to-one, there
exist some ambiguities in the choice.

Meanwhile, basing on the representation theory of O (4) group and the hypercubic group,
Mandula et al " develop an elegant scheme for the choice of glueball operators. Decomposing the
lattice color electric and magnetic fields into certain representations of the hypercubic group, they
construct operators with definite J™ . However, the correspondence between irreducible representa-
tion of the hypercubic group and spin J is also not one-to-one. The ‘leading spin’ is then assumed
when a—>0. Even so, this assumption also cannot determine the spin uniquely. For example, one
does not know how to separate ‘leading spin’ J =1~ from ‘leading spin’ J=2" in 6’ represent-
ation and one can not get the content of the non-leading spin[7J .

In this paper, we would like to show a possible solution to these troubles. By expanding the
chosen operator according to power of lattice spacing a, we require that the leading term of the
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chosen operator belongs to the irreducible representation J*° of SO(3)"° group. We assume that the
leading term will give the main effect to the state when a—>0, and the contribution should be only
given by the leading term in the continuum. Therefore, the spin of the corresponding state is
uniquely determined by the leading term of the expansion when the lattice tends to continuum.

Some observations are shown in the forthcoming section. We introduce our method in Sect. 3
and give an example of some preliminary results to verify our method in Sect. 4. Sect. 5 is a short
summary .

2 Some Observations

In the continuum, the glueball states with definite quantum number J°° make up of the basis of
certain irreducible representation J™ of SO(3)"“ group. But, on the lattice, there only exists its
finite point subgroup, 0°¢, and its corresponding irreducible representations R (R = A, ,A,, E,
T, and T,). Then to measure glueball mass in lattice QCD, there arises such a problem as how we
get correct results by only utilizing 0 group. To solve the problem, f(])llowing Berg and Billoire',
1,2.4,5

authors make the following continuum limit assumption (8= )’
m(0”¢) = m(AT%), m(17) = m(T}%), (
1
m(2) = m(E™) = m(T}°), m(3") = m(4]"), !
where m( R™) is the mass of the state extracted from operators in the irreducible representation R"¢
on the lattice and m( J°°) is the mass of state with certain spin J* in the continuum.
But as Momingstar and Peardon show'® , this assumption is not always right. From their simu-

P€=1"" states but most likely as

lation results, for example, T, * channel is not interpreted as J
J€=3"" state (less likely J=6,7,9, -, interpretation cannot be ruled out), since it seems this
channel and A; * are degenerated in the continuum.

Meanwhile, on a D =2 + 1 lattice, Johnson and Teper'*’ find that in A" channel there exist
two states with different masses. They interpret the higher one as the 4* * state and the lower one as
0" " state. Therefore, they also believe that one needs to develop a systematic and general procedure
to construct operators of arbitrary spin as a—>0"* .

Now, we present a possible procedure to solve these problems here. Let us begin the discus-
sion with some observations.

1) An arbitrary state | ¢ )can be generated by the current o acting on vacuum [0):

l¢) = 0]0). (2)
Since |0) is invariant under Poincare group and SU.(3) group, the character of |¢) can be de-
scribed by o. For simplicity, we only consider currents with mass dimension 4 here, saying
Bi(x) B/(x), where B’ are the color magnetic fields and i,j=1,2,3.
Obviously, both |¢) and o are color singlet. One gets such 6 color singlet currents:

8
2T(B,B,) = D) BB},
. Aa a=l
where B, = EB:' 5

We also require |¢) and o transform as certain representation J°* under $O (3)°¢ group .
Since B transforms as 1* ~ under this group, the P, C of Tr (B.B;) are + + . Using Clebsch-Gor-

a=1

dan coefficients, we can decompose these basis into J =0 and J = 2 pieces (due to the color sin-
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glet, there is no basis with J = 1)" . Then, in the subduced representation J ¥ O of the rotation
group SO(3) restricted to subgroup O, we find that the basis in J = 0 is the basis of representation
A,, and we can further reduce another five basis in J = 2 according to irreducible representations E

and T, of the cubic point group. So, we can categorize the basis as

J=0: a, = Te(B,B, + B,B, + B,B,); (3a)
J=2: e =TiB B, - ByB,),e;, = Tr(B,B, + B,B, - 2B, B,); (3b)
ty = Tr(B,B;),ty = Tre(B,B;),ty, = Tr(B,B,). (3¢)

Here a,, is the basis of representation A, , e, and e, construct basis of representation E, while ¢, ,
ty, and ¢, just make up of basis of representation T, .

This is just what Table 2 in Ref. [1] tells us: the subduced representation J =2 of the rota-
tion group can be decomposed into representation E and T, in the cubic group; the subduced repre-
sentation J =0 is just representation A, .

We can do similar analysis for higher mass-dimensional gauge invariant operators consisting of
color magnetic fields and its covariant derivatives.

2) Now, we consider how to construct the glueball operator. By expanding the chosen operator
according to the power of spacing a, we require that the leading term of the chosen operator belongs
to and only belongs to certain irreducible representation J*° of SO(3)" group. A simple example
is for the plaquette operator

0, = 320,(n) = DTel1 - Uln,)U(n + L,HU (0 + [, DU (0, )], (4)

ij

The link variabl:e Uisa conne"ctor defined by
Uln,i) = Pexp(ij th,-(an+aft)), (5)
0

where i is the i-th positive direction and P is the path-order operator. ‘

There are two methods to expand the operator. One is the application of non-Abelian Stokes
theorem'®""" and another method is introduced by Luscher and Weisz in Ref.[12]. We find that
both methods lead to the same results:

4 « 6
0,= E{%Tr( F,F,)(n) + 1_2_,1.1_( FyFsF;)(n)-

o

%Tr[ﬂj(oi + D})F,,.](n)}+ 0(a*), (6)

where F,; = 3,A, - 3,A, -i[ A,,A;] is the field strength tensor and D;* = 9, * - ilA,,+] is the
covariant derivative .

We now consider the PC = + + sector of operators, or real part in Eq.(6) with ignoring the

second term of r.h.s.. Due to O, = O, there are three non-zero independent operators Re 0, ,

Re O, ,Re0;, . Restricting oneself into the cubic group, one can combine these operators into repr-

esentation A' " and E* " :

4
A" :Re(0y + O + 03) = 5 D Tr(B,B, + B,B, + B,B,)(n) + 0(a*);

4
E** :Re( 0y - 0,) = %ETr(B,B, - B,B,)(n) + 0(a%),

1) The sy ic d ition is well di d by Jaffe et al 3in the study of the qualitative features of the glueball spectrum.

o

They suggest to construct glueball operators for certain J°C states with color magnetic and electric fields in the continuum case.
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4
Re( 0y + 0 - 20,,) = %—ZTr(B,B, + B,B, - 2B,B,)(n) + 0(a®), (7)

where the color magnetic field is B, = - % Esij,‘Fj,‘ .
Y

We suppose that the leading term gives the most contribution of the operator when a is small
enough, or, only the leading term gives the contribution in the continuum. While comparing
Eq.(7) with Eq.(3), it is assured that, in the continuum limit, the state extracted from such oper-
ator A’ is J”© =0"" ,and the state extracted from the operator E** corresponds to J*¢ =2*"
state.

We should emphasis again, in the general case, the continuum limit of the operator in repre-
sentation E or in T, is not always corresponding to J =2, i.e., the parallelism in Eq. (1) does not
always hold. Only after expanding the chosen operator as we do above, we are then able to affirm or
disaffirm the parallelism.

By the way, we should point out here that the non-leading terms in the expansion of the opera-
tor do not always belong to the same J°° as that of leading term, which will bring up the mixing with
different spin J. But, this artificial mixing will decrease with the decreasing of lattice spacing a so
that the mixing should vanish when @ =0 in despite that it will affect our error estimate. On the oth-
er hand, we can utilize the non-leading terms to explore high-spin states.

These two examples tell us that to calculate the mass of the definite J°° state, we should
require the continuum limits of our operators belong to and only belong to J° representation of
S0(3)"° group. One can achieve this aim by using the combination of the different operators which
belong to the same R".

3 The Construction of the Operator

We examplify here how to construct operator 0 * and 2°* up to a*. Gauge-invariant current
o with 0' " corresponding to the scalar glueball can be written as

3
0 = E{a‘ZTr(B,—Bi)(n) + a® x (current with mass dimension 6) + }, (8)

inl

3
where the current with mass dimension 6 is the combination of ETr( D,F,D.F;),

i

3
FuDF,,) and ZTr( D,F,,D,F;, ). For simplicity, we only consider the current o up to

J

3
2 Tr(D ,
i ivje
mass dimension 4 in this paper. Then, let us observe the sum of the planar special 2 x 1 rectangular

over all lattice sites;
0; = EO:j(n) = %ZTri[l —U(n,)U(n + L,i)U(n +20,)U " (n + L+ ],0)-

U'n+ 7,000 (n, )]+ 1= UCn,i)U(n + i,))U(n + i+ ],
U'(n+2], 00U (n + ., )U " (n,j)]}. (9)
The real part of the expansion for the operator 0} is
4 6
Re 0, = Z{%ﬂr( FyF;)(n) = 2710Te(F (D} + D,’.)F,.,)(n)}+ 0(a*). (10)

n

Then, we define

8,(n) = Re( 0,(n) - 3507 (n).
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Continuum limit of operator &, is

4
8, => %Tr( F,F,) + 0(a"). (12)
Decomposing @, into A,' * according to traditional method, we get the basis of representation A, " :
4 -
Fm@,+0,+6; =3 2T(B,B, + B,B, + BB + 0(a").  (13)

Apparently, the quantum number in the continuum limit of F is 0°" . In other words, F
transforms as 0* * under SO (3)"¢ group up to a*. We expect that the symmetry of SO(3) has
been restored when a0 and the extracted state should be mainly given by the leading term of F.
So that, the extracted state is 0** in the continuum limit. Operator F is our aimed operator for
0" state.

We may also choose the basis G, and G, of the representation E** to measure the tensor glue-
ball mass as follows. The operators and their expansions are

4
G, = Re(@y - ©,) = ) 20Te(B, B, - B,B,) + 0(a"). (14)
and '

4
C, = Re(@, + O, -208,) = S 2% T(B,B, + BB, - 2B,B,) + 0(a*). (15)

2410

According to (3b), they belong to basis of the representation 2 * up to O( at).
4 Simulation Results

In the SU(3) pure gauge theory and under the quenched approximation, we perform our calcu-
lation on an anisotropic lattice with improved gluonic action as chosen in Ref. [13]
Sg = | {SQNE’ 4+ 45, - Q. = ... }
: 380 | S By 12w wl )

where @ =6/g", g is the QCD coupling constant; u, and u, are mean link renormalization parame-

(16)

ters, u, is given by the fourth root of the average plaquette, and we set u, = 1; & = a,/a, is the as-

pect ratio; (2,, includes the sum over all spatial plaquettes on the lattice; (2,, indicates the temporal
plaquettes; (2,, denotes the planar 2 x 1 spatial rectangular loops and {2, refers to the short tempo-
ral rectangles (one temporal and two spatial links) . More detail is given in Ref. [13]. We adopt
parameters in Ref. [3] as our simulation ones which are given in Table 1.

Table 1. The glueball simulation parameters 3| Here we assume r, =410(20)MeV.

B 3 u; Lattice rdrg a,/fm
1.7 -5 0.295 . 6 x-:m.- 0.8169 0.39
1.9 5 0.328 8% x 40 0.727 0.35
22 5 0.378 8% x 40 0.5680 0.27
2.4 5 0.409 8 x 40 0.459 0.22
2.5 5 0.424 10° x 50 0.407 0.20

As argued above, we choose operator F to calculate the scalar glueball mass and operator G,
and G, to calculate the tensor glueball mass. As usual, we calculate the vacuum expectation of the
correlation function C(¢) = (0| 0o®(t)0"(0) |0) to determine masses of the corresponding glueball
states by fitting its decaying exponential, where o" () = 0(t) - (0| 0(¢) |0) is the vacuum-sub-
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tracted form of the chosen operator. Configuration ensembles were generated using Cabibbo-Marinari
pseudo-heatbath and SU(2) subgroup over-relaxation methods. We set 2800 heatbath sweeps to
make configurations reach to equilibrium. At the same time, following the mean field theory'™' , we
also replace link variant U by U/u, in the chosen operators to suppress the tadpole contribution.
Improvements such as fuzzying and smearing are also used to suppress the fluctuations of the fields.
Four heatbath updating sweeps and one canonical sweep were performed between two measurements.
We group 5600 measurements into 80 bins for making a correct statistic error estimate. The results

for a, m are shown in Table 2.

Table 2. Glueball energy mga, for each fi.

8 1.7 1.9 2.2 2.4 2.5
scalar 0.609(4) 0.515(8) 0.412(7) 0.315(6) 0.322(2)
tensor 1.019(3) 0.95(1) 0.71(2) 0.548(6) 0.519(4)

Now we comment on the error estimate. First, our action breaks the rotation symmetry to
0(a’,al),i.e., the upper limit of the precision in the calculation is O( a?,a’). Since as argued
by many authors, the contribution of O( a}) can be ignored, the upper limit of the precision here is
0(a?). Second, we ignore terms ( currents) with mass dimension 6 in Eq.(8) . Due to the dimen-
sional analysis, the contribution of the currents to error should have a square mass suppression™® ,
which will make two effects on our mass measurement. One is that we should include it in systematic
error in the continuum limit, which needs further calculation to get its accurate value. Here we sim-
ply expect that it is about (Agcp/m)®, where we set Agcp ~250MeV and m is measured mass.
The second one is that it will take O( a’) error when a, % 0. Since it is not statistical error, its
contribution to error can be fitted by ¢, a’ + c,a} + .

As expected, we get the same simulation results from operators G, and G, . since they corre-
spond to the same state 2° * .

From the argument and calculated data, we use the formula m (0" ", a,) = 1. 754 -
1.514Ca,/ry)* +1.773(a,/ry)* and m(2** ,a,) =2.417 +0.783(a,/r,)* - 0.787(a,/r,)*
(unit:GeV) to fit our data. We present our data and fitting curves in Fig.1.

5

(V%]

mg/GeV

2

0 a1 02 03 04 05 0.6 0.7
(as/ro)z
Fig.1. Masses of scalar and tensor glueball against the lattice spacing (a,/r, )" .
The fitting curves are m(0* * ,a,) = 1.754 - 1.514( a,/ry)? + 1.773(a,/ro)* lor scalar glueball mass and m(2* * ,a,) =
2.417+0.783(a,/7)* - 0.787( 6,/ ry)* (unit: GeV) for tensor glueball mass, respectively. The masses in the continuum limit
are 1.754(76)GeV and 2.417(44) GeV if we only consider the statistical error.

The statistical error is 0.076 GeV for scalar glueball and 0.044 GeV for tensor glueball. Ac-

cording to Ref.[3], systematic error is 1 percent (from aspect ratio) . But since our method also
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gives about 2 and 1 percent systematic error for 0 * and 2" * states respectively, the total systemat-
ic error is about 2.2 percent (39MeV) and 1.4 percent (34MeV) respectively. Therefore, the mass
of scalar glueball is 1.754(85)GeV and the mass of tensor glueball is 2.417(56) GeV. Including
the uncertainty in r; ' = 410(20)MeV, our final results are ms(0"* ) = 1754(85)(86) MeV and
me(2°7 ) =2417(56)(117) MeV.

For comparsion, we list our results and that from UKQCD' , IMB"*' and Morningstar and Pea-

rdon'* in Table 3.
Table3. 0°° and 2" glueball masses (unit: MeV).

UKQeD'?! IBM'S! Ref.[3] our results
scalar 1550(50) 1740(71) 1730(50) (80) 1754(85)(86)
tensor 22700 100) 2359(128) 2400(25)(120) 2417(56)(11)

We set our simulation parameters as those in Ref.[3]. Therefore, one can find that our simu-
lation results are more consistant with that from Ref.[3]. It conforms our approach. But, unfortu-
nately, Momingstar and Peardon'’" apply the variational principle in their numerical simulation, we
cannot compare their operators with ours by expanding it.

5 Conclusion

Basing on the connection between the asymptotic expansion of the operators and the quantum
number J¢ of the extracted state, we have presented a new approach to constructing operator on lat-
tice for the calculation of the glueball mass, which may solve the ambiguity in the simulation. In
general, to calculate the mass of definite J°° glueball states, first one should write out these cur-
rents which transform as the representation J°° under the SO(3)”¢ group in continuum and decom-
pose them into irreducible representations R of the group 0" in the subduced representation, then
one should construct corresponding operators which belong to the representation R"* of the 0"¢
group on the lattice just as the paper mentioned above.

To verify our approach, we have calculated the SU{(3) scalar and tensor glueball mass under
the quenched approximation in this approach. Since the continuum limit of operator F is 0° ", we
affirm the mass extracted from the operator F is scalar glueball mass and its value is 1754(85)(86)
MeV . For the same reason, the mass extracted from operator G,{i =1,2) is that of the tensor glue-
ball and its value is 2417(56)(117)MeV. These results are consistent with those obtained in Refs.
(3,5,13,16].

Apparently, there is no radical obstacle to prevent us to calculate the mass of states with any
spin J in this approach. For instance, we should present our results for the mass of the ground 4* *
glueball elsewhere.

Of course, the operator, which transforms as J*¢ of SO(3)”° group in the continuum, is not
unique. For example, one can also construct the operator including color electric field. With these
operators, one can determine their relative weights of contribution by variational principle. But, we
did not make such treatment here.

We would like to thank Z. Q. Ma, T. Huang and K. F. Liu for the helpful discussions and
useful comments .
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