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Spin Operator for the Relativistic Particle”
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Abstract A systematic theory of the appropriate spin operators for the relativistic states is devel-
oped. This paper discusses it in particle case, i.e., the quantum mechanics problem. For a massive
relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativis-
ticone. In the frame of irreducible representation of Poincaré group, this spin operator, which is
named as moving spin and applied to all the canonical states of the particle, is constructed. Further

discussion on the concept of moving spin in the quantum field theory will be followed.
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1 Introduction

In high energy physics, the study on the kinematics problem on high energy procedures is the
basis of the reliable analysis of all new phenomena. One may refer to the comprehensive works:!!
made by 8. U. Chung. On this subject, as is well known, the spin description for particles with
nonzero spin is of pivotal importance. The canonical state scheme is the natural generalization of that
of the nonrelativistic particle to the relativistic case, and it is the basis of partial wave analysis which
is frequently utilized in experimental analysis. In this generalization, a relativistic spin operator must
be employed. Pryce?’ first obtained an operator in similar form from the commutation relation
requirement but with somewhat artificialness as stated by himself. Later work concerned this opera-
tor appeared in Refs. [3,4]. However, some ambiguity either on the argumentation or on the phys-
ical meaning still exists. For the importance of the topic, we performed a systematic study on this
operator. We first clarified the problem of quantum mechanics and determined the appropriate spin
operator for a relativistic particle. Hereby we further discussed it in the quantum field theory.

The discussion in this paper, however is merely on the quantum mechanics. Pertaining to the
canonical states of the particle, which are the base of the irreducible representation of Poincaré group
(.7), the spin operator is constructed. We name this operator as moving spin of a particle (PMS).
Our argumentation is based on the basic equations of the particle states and the properties of the repr-
esentation of .7, and surely this is a strict one. The extension to the relativistic quantum field theory

is left to the subsequent paper'® .
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2 Relativistic Spin Operator for a Massive Particle with Nonzero Spin

For a particle with mass / and spin s, the static states | p,v) which form an irreducible repre-
sentation of rotation group can be characterized as following

/‘J\fz,v)ZZﬁ\é,V), (1)
.;: p,u)—ufp,v), (2)
selp,w)=vs(s+1)—v(pt1)|p,vt1), (3

where p=(m,0) and 5. =5, = is,. The notation for the operators is specified in the Appendix.
Eq.(3) means that the Condon-Shortley convention is adopted for the states with different v. We
may rewrite Egs. (2) and (3) into

§'|p.v):s;,'_)vl‘p,/t) i=1,2,3(or r,v.2), (4)

Yo . . . . . - N Ll [
where s'7) is the spin representation matrices for spin-s which reads si‘;) =B, sl (s‘,‘_'t +
s, s = (si,_',) - 55, )/2i, while sV sGHD v F D 8., and 5, =

Viss D =w(v - 1)6,, ;. Owingto L] p,v)=0, 5" in Eq. (4) may be replaced with J'.
From the above static state | p,v), the canonical state, which describes a relativistic particle,
is defined as follows
o) =TIQM I p ), (5)
where p= p* =(E,p) is a d-momentum, ‘T’ means the representation of space-time transforma-
tion on the space of one particle states, and Q(p) is a boost which changes the momentum p to p
and reads as follow

(E p W
Q(p)= ’1’; " o (6)
m m(m+E) t1 J

which satisfies Q' =Q"=Q and Q' (p)=Q(p), where p=p* =(E. - p).

States described by Eq. (5) are orthogonal for different p or v, and as the base for an irreduc-
ible representation:® of .? possess the completeness. Owing to the Lorentz invariance, the orthonor-
mality relation is adopted as (p", v'| p, v). = 8(p,p )8, , » and correspondingly, the complete-

Jc—ip L puov)e(pov | =1. Inthe above 6(p, p ) =2p,8V (p~ p’),while

. Al
ness relation reads L

dp=d*pl2p,.
By TLQ '"(p)1p"TIQ(p) ) = Q(p) p*, first it is fairly simple to verify that | p, ) is an
eigenstate of momentum p*
Py v)e=pip, v (7
As for the other symbol v, a proper operator is needed. Let s(p)" TIQ(p)ISTIQ '(p)],
then from Fq. (4)
s(PY Upyv)e=s b, (8)
It is found that s(p)* acts on the moving state | p, v), just in the same manner as § acts on
the static state | p, v). What is remarkable is that in the following we can find that there exists an
operator which acts on the all canonical states as defined in Eq. (5) exactly in the same manner as 5°
acts on the static state | p, »). First we may calculate the explicit expression of (). Via the
Lorentz tensor &%, we may get after some computation
ms(p)= pod —(m+py) 'pp-J-pxK. (9)
Owing to Eq. (16) in the Appendix, we found that all the p in the above equation can be replaced
with the operator p to get an alternate operator which keeps Eq. (8) unchanged. Or rather, we can
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define )
ms(p)=poJ = (m+po) 'p(p-d)-pxK , (10)
which satisfies

PPy )=t

P 1 )c ’ (11)
and the commutation rules
[s(p) s s(p) =10 s(pY 1=i#s(p)k. (12)
Eq. (12) exhibits the required property as a spin operator for s (p)*. Just as showed by Eq.
(11), it is the spin operator for a moving particle with spin. We can fairly call it the moving spin of
the particle.
Under an arbitrary Lorentz transformation L, the canonical state transforms as follows, T [ L]

L pav)e = TLLQ(P)] 1 pov) = DIDLIR) | Lp,p)e,where R = R(L.p) =

p
Q '(LpYLQ(p) is the Wigner rotation. Considering the special case of an infinitesimal rotary
transformation, we may obtain J | p.v), =[ —ipx3fap+s(p) ]l p,v).. Owing to the complete-

ness relation of the canonical states, it is followed that
N a3 PR
= — X == + . 3
J ip p s(p) (13)
The above equation means that we have now redivide the angular momentum operator J into J

=L(p)+s(p) withL(p)= —ipx3d/ap. Wemay also give L (p) a name, moving orbital angu-
lar of the particle (PMOA).

3 Conclusion Remarks

We have constructed the appropriate spin operator PMS for the relativistic particle in the frame
of irreducible representation of .2 PMS is applicable to all the canonical states of the particle. In the
succedent paper'- . the discussion is extended to the quantum field theory which results in two new
operators, field quanta spin and moving spin for the field system. All these results enable us a better
understanding of the spin, and we regard them as the starting point for our endeavor to the spin cri-
sis, the contemporarv puzzle about the spin of a proton.

The authors are grateful to Profs. ZHU YuCan and ZHENG ZhiPeng in IHEP for their support
and uscful suggestions. We also thank Prof. S. U. Chung in BNL for his kind help on the research
materials.
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Appendix
Momentum and Angular Momentum of a Particle as the Generators of ./
Discussions in this paper are intimately related to .7 A brief review of Poincaré algebra is provide here.

RNV )

n

Some notation of the paper is also comprised in this appendix.

Suppose a particle with mass m and spin s is described with the wavefunction ¢(r), where » = .+ = (",
1 2

22t ) =(s, &, v, z). We take the metric tensor for Minkowski space as ¥ — 3, = diag (1, -1,
=1, = 1). Now perform a space-time transformation 7(a, L):x =2 = Lz + a. then the wave function
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¢(x) transforms as ¢(2) ¢ (2)=T""a, L]¢(x)=TIL "JT[P(—a)|¢{x), where a is the param-
eter for the space-time translation  Suppose that the parameter for Lorentz transformation L is «®, we may
write
¢ (x)=e1¥, e hg(a), (14)

where i)# and ] o are momentum and angular momentum operators respectively, and the generators for space-
time transformation. ] 1 cONSists of two parts

Ju =L+ 5=, — 2+ 5, (15)

. ()
while s,, is the spin tensor of this particle. As an example, for the Dirac particle, Se = % %( YoYe T M)
The commutations in the following are familiar,
[bﬂ b= 0‘[%: , LapJ = i(7];u/30 - ij’a)’ [L,W' Lop] == i(”]me = Dol * Mole = Mpli)

(Pps 50 )= [Lyys 5p] = 0.[5,.5,] =— aSs = DS + NSpr — Thohoa ) «

(B0 -jw’]: i( by — Vmi’a)'U.W' TWJ =-i( quTw - ’lew * ;?WTIM - waTw)(Y‘ = L.s.J).
(16)

The last two lines of the above equation indicate that f),, is a Lorentz vector, and that L, , s, and J,, are all

Lorentz tensors.
The Pauli — Lubanski is defined as W;, = —é—«mp ﬁ“j“" , with the commutations
(W, W= —iu W, [W,, 5,10, [W,, ], ]1=i(g.W,-g.W,). (17)
Next, the two Casimir operators are defined as (‘1 = p,p* and Cz = WVW" . which satisfy [(, s 1= [F, .
J.1=0.Gi=1,2).
From the Lorentz tensors J , L.; . we may define the following space vector operators
L= oul? =l 5= o —guin, J,=L, 455

ZyzL()i:‘LO" "r;’z-;Oi:_;O'v ki=2i+T;v (18)
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