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Chaotic Motion of Classical Particles
in Axially Symmetric Potentials
with Octupole Deformation

Li Junging

(Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou, China)

The fact that there are more prolate-deformed nuclei than oblate-ones in nature is found
to be related to the chaotic motion of nucleons. The primary investigation with classical
theory showed that the particle motion in the potential with oblate-plus-octupole
deformation could become chaotic at a smaller deformation strength as compared with
the case of prolate-plus-octupole deformation. The reason is that the negative curvature
in the potential surface could appear at a smaller deformation strength for the former
one.
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1. INTRODUCTION

In the nuclear independent particle model, any individual nucleon is considered to move in a
mean potential field which is produced by all other nucleons. This mean potential field may be
spherical, as for double magic nuclei; it may be deformed, as for deformed nuclei. These are
fundamental postulations of the shell model which is very successful for describing nuclear structure
and nuclear collective states. Deformed nuclei often show a nonlinear character, but to observe and
study nuclei from the point of view of the non-linearity is still a new attempt. Inrecent years, the study
of classical chaotic motion for a non-linear Hamiltonian system showed that even very simple systems
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with a few degrees of freedom may show colorful chaotic features [1, 2]. Thus, the investigation of
regular and chaotic nucleon motion in the nucleus will possibly shed light on connecting the
investigation of nuclear property with the non-linear problem which exists widely in various aspects
of the physics world. In this aspect some primary studies showed that when a spherical mean field
begins to deform, and if the deformation is described by spherical harmonics with the multipolarity
higher than octupole order, then the nuclear motion may change from a regular pattern into a chaotic
one at a strong enough deformation strength [3, 4].

Recently W.D. Heiss ef al. [5] found that in a prolate-plus-octupole deformation potential
(P-case), there is no chaotic motion found even if the deformation strength is rather great, and in an
oblate-plus-octupole deformation potential (O-case), there is chaotic motion found even if the deformation
strength is rather small. The significance of the discovery is not only interesting in the sense of any
theoretical study, but also interesting as there are more prolate nuclei than oblate nuclei in nature, and
also more prolate triaxial deformed nuclei than oblate triaxial deformed nuclei. Heiss ef al. have
studied the problem both classically and quantum-mechanically . However, they did not survey the
origin of the phenomenon. Their current work investigates this origin in the classical way primarily.

2. DYNAMICAL CONDITIONS
2.1. Axially symmetric octupole deformed potential

As in Ref. [5], a single particle is governed by the following potential
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where p? = x* + ¥*, and x, y, and z are Cartesian coordinates. The first two terms in the square
brackets stand for the axially symmetric harmonic oscillator potential, and the frequency in the z
direction is different from those in x, y directions, w, = w, = bw,. For N = 0 the parameter b
measures the quadrupole deformation which is prolate for » > 1 and oblate for » < 1. The third term
in the square brackets is the axially symmetric octupole deformed potential, which is proportional to
r2Y,,. Where Y;, is the octupole spherical harmonics, r? = p? + z. For any given quadrupole
deformation, either for b > 1or b < 1, there is a critical value A, so that for |\| > \, the potential

no longer binds a particle. For prolate potentials, b = 2 > 1ischosen, A, = _Q% ; for oblate ones with

b = 0.5 the critical value is A, = 1.64.
2.2. Dynamical equations

In the potential by Eq. (1) the canonical equations of a classical particle are
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which are non-linear equations, bearing no analytical solutions. So they have to be solved numerically.
Here the Runge-Kutta algorithm is used, and the time step is taken as 0.1 fm.

3. NEGATIVE CURVATURE OF THE POTENTIAL SURFACE AND
THE PARTICLE CHAOTIC MOTION

2
In a Hamiltonian system H(q,p) = % + W(q), the phase difference between two arbitrary

neighboring trajectories {¢,(z), p:(1)} and {g,(®), p,(0} is (1) = ¢:(1) — g:®), 9@ = p,() — (). The
analysis of the trajectory stability [3, 6] showed that if the difference changes with time exponentially
then for a system with two degrees of freedom there must exist

o'V o'V ( o'V )2
-5 <o,

T o4 94 \04,9q, 3)

where the derivatives are along the fiducial trajectory ¢, and scalars g, ¢, are the components of the
two dimensional vector q.
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Fig. 1
Equipotential lines in the x — z plane at y = O for
oblate (b = 0.5)-plus-octupole deformation. (b) The
curvature of the corresponding equipotential lines.
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It turns out that the sign of C is the same as the sign of the Gaussian curvature of the potential
surface, which is [7]:

o (_a_zK_)z
o4 0q; \0q,0q,

K(qi:Q2)= aV 2 aV 272 (4)
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[ ¥ (aql) * (aqz) ]

So it can be considered that the negative curvature of the potential surface would cause the exponential
separation of the neighboring trajectories. If a particle sweeps the potential area with negative
curvature for many times, the phase difference of the neighboring trajectories would greatly change
and this would lead the particle motion to become chaotic. For the sake of convenience, here the
curvature of the potential surface is defined by C (Eq. (3)).

In Fig. 1 the projections of the potential surface V(p, z) onto thex — z plane at y = 0 are plotted
on the left column. From the top to the bottom A/, are 0.1, 0.2, and 0.5, respectively, with A, =
1.64. Since the potential is scale invariant as V(yr) = ¥*W(r), potential surfaces with different energy
are all similar, and only one equipotential line is needed to visualize its form. In the right column the

Fig. 2
Poincaré sections in P, — z plane at p = O for the trajectories of the

classical particle governed by the oblate-plus-octupole deformed potential.
The octupole deformation parameters M, are (a) 0.1: (b) 0.2; and (c) 0.5.
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curvature of the corresponding potential surface is shown. For A = 0.1A; there is no negative
curvature in the potential surface. For A = 0.2\, at the top of the potential surface there is a small
region with C < 0. For A = 0.5, the negative curvature region in the top of the potential grows and
two other regions with negative curvature appear on the both sides of the potential.

In Fig. 2 the corresponding Poincaré sections in the P, — z plane at p = 0 are shown. It is
indicated in the figure that for (a) there is no negative curvature in the potential surface and a
thoroughly regular Poincaré section is observed. For (b) corresponding to a small region with negative
curvature the irregular scattering of points is distributed in a very thin ring in the Poincaré section. For
(c) corresponding to the three regions of stronger negative curvature (see Fig. 1) in the potential
surface, a large area of the irregular region can be observed in the Poincaré section.

For the P-case the corresponding calculations were completed taking b = 2. In the left column
of Fig. 3 the equipotential lines in the x — z plane at y == 0 are shown for A/A, = 0.5, 0.6, and 0.7,
respectively, with N = % For N/A\, = 0.6 there are small regions of negative curvature in both sides
of the potential surface, and the curvatures are shown on the right column. Note that the scale of z
corresponding to the x coordinate was strongly compressed so that the prolates appear to be not very
long. Otherwise if the scales in z and x are taken to be the same, the equipotential surfaces will be
greatly elongated. Correspondingly, in Fig. 4 the Poincaré section indicated that for (a), M\, = 0.5,
there is no negative curvature in the potential surface, and the Poincaré section shows a regular
pattern; for (b), M\, = 0.6 and for (c) M\, = 0.7, corresponding to the observed growing negative
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(a) Equipotential lines in the x — z plane at y = 0 for
prolate (b = 2)-plus-octupole deformation. (b) The
curvature of the corresponding equipotential lines.
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Fig. 4
Poincaré sections in P, — z plane at p = 0 for the trajectories of the
classical particle governed by the prolate-plus-octupole deformed potential.
The octupole deformation parameters M, are (a) 0.5; (b) 0.6; and (¢) 0.7.

curvature in the potential surface, there are growing chaotic areas in the Poincaré sections. In
Heiss’work, for the P-case (b = 2) with A/, = 0.67, there is no chaotic structure observed in their
P, — z Poincaré section at p = 0. The reason is the following: In the same potential, trajectories with
different initial conditions appear in certain regions of the potential, respectively. In the case that one
did not find out the right initial condition which leads to the chaotic trajectory, the chaotic trajectory
would be lost and the corresponding chaotic region in the Poincaré section would be missed. Actually,
the chaotic region we have discovered was located in the blank region of their P, — z Poincaré section.
For O-case (b = 0.58) with M\, = 1/3 they obtained a chaotic, almost structureless Poincaré section,
which coincides with our results.

4. SUMMARY

For a regular integrable system, there are as many integrals of motion as degrees of freedom.
Confined by the integrals of motion, each degree of freedom can only distribute in a finite area of the
phase space instead of an arbitrary infinite distribution. If in the case that one integral of motion was
destroyed, the corresponding degree of freedom would be free from the restriction and could possibly
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extend infinitely. However, the KAM (Kolmogrov-Arnold-Moser) theorem attests that this is not the
case. For a non-integrable system which is sufficiently close to a integrable one, if the non-integrability
can be treated as a perturbance to the integrable Hamiltonian function, then under a small perturbation
(nearly integrable system), the pattern of the motion could be still consistent with that of the integrable
system. The torus formed by trajectories in the phase space still exists, but is deformed; in the case
that the perturbance is strong enough (strong non-integrable system), the pattern of motion will change
qualitatively into chaotic and the torus will be destroyed. The KAM theorem is thus considered as, "the
greatest breakthrough in the developing history of Newtonian mechanics" [&].

To make a motion chaotic, there must exist a turbulence which destroys the integrability of the
system. At least one integral of motion has to be destroyed, and the strength of the turbulence must
be strong enough to accomplish the destruction. Here the demand for this so-called "strong enough"
power is a qualitative one and it is not indicated by the KAM theorem. In this work, the incorporation
of the octupole deformation term destroyed the angular momentum conservation of the system, and
only the projection of the angular momentum onto z axis is the integral of motion. For smaller
deformation strength A, when there is no negative curvature in the octupole deformed potential surface,
there is no chaotic motion. As the deformation grows, the negative curvature appears in the nuclear
potential surface, and there will always be a chaotic trajectory found as long as one searches carefully
for it in the phase space. So, as a supplement to the KAM theorem, we have provided the turbulence
strength required for chaotic motion. The requirement of the turbulence strength to cause chaotic
motion is that there must be a negative curvature in the deformed potential surface. The zero curvature
will be a critical point for the motion changing from regular to chaotic. It has been mentioned in the
text that the negative curvature would appear at bigger A\, for the P-case than that in the O-case. As
it was shown in Fig. 3 for the P-case the chaotic motion would appear at very strong deformation, and
usually the nuclear deformation cannot reach that extent. Thus, for the P-case, there is a remarkably
stronger stability against chaos than for the O-case. Furthermore, when the axial symmetry is broken,
and the deformation turns towards a three axial deformation, for example, the deformation could be
expressed by Y, where m # 0, though the corresponding integrals of motion were broken, the
nucleon motion could be still regular as long as the curvature was positive everywhere in the deformed
potential surface. Then the corresponding trajectories were still confined in a torus, but it is deformed.
To sum up, the negative curvature in the potential surface appears at smaller deformation for the
O-case than for the P-case so that the chaotic motion is usually observed in the O-case. The
corresponding nuclei become more unstable when some of their integrals of motion are destroyed. The
reflection of the influence of the negative curvature in quantum mechanics will be an interesting and
compelling problem.
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