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Factorial Moments of Continuous
Order and Multifractal Analysis
in 400 GeV/c pp Collisions
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The method of factorial moments F, of continuous order suggested by Hwa has been
tested. It was found that using this method to analyze the experimental data will not
produce satisfactory results. Some improvements were made for Hwa’s method, making
it suitable for multifractal analysis of experimental data. The analytic results for the
experimental pseudorapidity distributions of charged particles produced in 400 GeV/c
pp collisions indicated that the method of the factorial moments of continuous order is
feasible. There is possibly multifractal behavior in the process of multiplicity production
in pp collisions at 400 GeV/ec.
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1. INTRODUCTION

In order to investigate the intermittent phenomenon of multiparticle productions in high energy
collisions, one may calculate the moments of the multiplicity distribution and study their dependence
on the size of phase space. The multiplicity distribution originates from the dynamic and statistical
fluctuations. In high energy hadron collisions, the multiplicity is usually small, especially when the
phase space becomes small, and the statistical fluctuation will be a dominant factor compared to the
dynamic one. Bialas and Peschanski suggested investigating the intermittent phenomenon using the
scaled factorial moment F, [1] which was defined as
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which gives a nonbiased estimation of the moments of dynamic fluctuation. It greatly improved the
study of intermittency. However, the defect of the factorial moment is that the order of moment should
be an integer greater than or equal to 2. Consequently, one cannot obtain two important fractal
dimensions D, and D, and the dip signal of the pseudorapidity distributions. It was later suggested to
use the G, moments and various modified ones, which have arbitrary g values and overcome the
defects of F,. However, the G, moments have an inherent defect, i.e., they did not eliminate the
influence of statistical background. Subtraction of the statistical component has to be done by hand [2].
Because of this, it is necessary to make the order of F, moments continuously varying in order to have
both merits of F, and G, and to overcome both defects. Hwa recently proposed a new method [3] to
obtain F, moment of continuous order. However, it is unsatisfactory for use in experimental data
analysis. We have made some modifications for this method and made it feasible for multifractal
analysis of experimental data.

)

2. HWA’S METHOD OF FACTORIAL MOMENT OF CONTINUOUS ORDER
The multiplicity distribution P, can be represented as
P, =8SxXD, 2)

where S represents the statistical fluctuation which was described by Poisson distribution, and D
represents the dynamic component. Further, it can be written as

N Y S
P, = L dr— €"D(p). 3)

The scaled factorial moment F, can be written as

Fo=f1f, @
where
= nl
5= 2 gy ®

Because q is a positive integer, substituting Eq. (3) into Eq. (5) and performing the summation over
n, one can obtain

f:’ = jo dt tq D(t). (6)

It is the g-th moment of the dynamic fluctuation D(z). However, for continuous order ¢, Eq. (5) cannot
be applied to obtain Eq. (6) of the g-th moment f, of the dynamic fluctuation. So, other methods are
needed. It is demanded in Ref. [3] that Eq. (6) is suitable for all g. In order to obtain the expression
of D(¢), the multiplicity distribution P, is expanded using negative binomial distribution (NBD), i.e.,

N
P, =Y a Pk, x), )

. =0
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where n = 0, 1, -, N (N is the maximum multiplicity), and

" I'(n+k) k\S( % ) |
g (k"’x")=1“(n+1)1’(k,)(k,-+xj) (k+x) ®

Using Eq. (3) and the following relation

-3 tﬂ —
Pr‘:m(kf,a%) = Jo dt;?e DNB(tsj)a %)
where
ki b tk’-l (k t/x)
D, p=\= B
(W)} ()9) Tt e , (10)
one gets
N
NB -
D@ = Z a, D™, j). a1
Substituting (11) to Eq. (6) and integrating over ¢, one finds
N
@) =2 af™agj),
i=0 (12)
where B
x\'I'(g+k)
fNB(qa N= = "-—‘—"I— (13)
k) Tk)
Then one obtains the relation similar to Eq. (4)
F(g) =f(q) / FQ). (14)

To determine the value of a;, one should assign N + 1 pairs of x;, k;, then calculate P?B(kj, x;)

according to Eq. (8), and get the values of g; by solving the N + 1 linear algebraic Eq. (7). Therefore,
the factorial moments of continuous order F(g) can be obtained by Egs. (12) and (14).

3. TEST OF HWA’S METHOD

To have a test of Hwa’s method, we apply Hwa’s method to the multiplicity distribution with
Poissonian distribution

P,=e ()" / nl, (15)

P, is calculated analytically according to the above equation with (n) = 1, n =0, 1, ~, N;
N = 10. We used the above method to expand P, and calculated N + 1 expansion coefficients a;, then
calculated the factorial moment of continuous order F,. In the calculation, the program package called
MATHEMATICA is adopted to ensure numerical accuracy. The results are shown in Fig. 1 with a
solid line. It can be seen that F(g) has a constant value of 1. In an experiment, the access to an accurate
value of P, would require measurement of an infinite number of events. However, in a real experiment,
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Fig. 1
The results obtained by Hwa’s method and by the maximum

likelihood method for Poisson distribution ((r) = 1).

Solid line: the results of the analytic P,; long-short line, dotted line, dashed
line: the results for 10°, 10, 10’ MC events; dot-dashed line: the calculated
results using the maximum likelihood method for 10° MC events sample.

one can only measure a finite number of events. So each P, is measured with a statistical error. In
order to see the effect of the statistical fluctuation, we performed a Monte Carlo simulation according
to the Poisson distribution. Three samples are generated. Then we counted up the P, and calculated
F(q) according to the Hwa’s method. The results are shown in Fig. 1. It can be seen from Fig. 1 that
the F(g)’s deviated from 1 obviously and the deviations cannot be reduced only by increasing the event
number. It is because the expansion (7) demands penetrating all the experimental points P, precisely.
So large statistical noises are included in the expansion coefficients a;, i.e., a set of very large g; values
with alternating signs may appear and cause great instability for the results of F(g). The a;’s of the 10°
event sample are listed in Table 1.

4. IMPROVEMENT OF HWA’S METHOD

Because the negative binomial distribution can fit the experimental results well, we can choose
a smaller number of @; ( = 0, 1, -, J, J < N) to fit the experimental data

J
P, =j; a, P°(k,, x,), (16)
where x=x(1+4) k=kl+ 4);
N N
X = (n) = Z nP,
n=0

k=(F,~ 1), F={n(n-1)) | %;

4= A(“%+£)’j= 0,1, 5. an
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Table 1
The calculated results of a 10° events sample for the
Poisson distribution with (n) = 1.

n N, N,(MC) N, j g a

0 36787.9 36571 36659.0 0 —6.0310967075 x 10° | ~0.0436
1 36787.9 37130 36887.5 1 5.1107712192 x 105 | 1.0867
2 18394.0 18274 18456.9 2 —1.8943023020 x 107 | —0.0431
3 6131.3 6120 6125.1 3 4.0111196201 x 107

4 1532.8 1558 1516.5 4 ~5.3070399844 x 107

5 306.6 293 208.7 5 4.4927260786 x 107

6 51.1 41 48.7 6 —2.3765120027 X 107

7 7.3 12 6.8 7 7.1816970312 x 10°

8 0.9 1 0.8 8 —~9.4927165712 x 10°

Notes: N,: the event number distribution calculated according to Eq. (14); N,(MC): the event
number distribution for the Monte Carlo sample; Nn: the fit values of the MC sample using the
maximum likelihood method; a;: the coefficient obtained by using Hwa’s method to expand
N,(MC); a;: the coefficient obtained by using the maximum likelihood method 1o fit N(MC).

A can be set to 0.5 [3] and the A;’s range from —A/2 to A/2 in equal steps. The fit was performed for
N + 1 points P, and using the maximum likelihood method. The a;’s are chosen so that the following
likelihood function L reached its maximum,

No! 5N
L = H,,N-o M! Hn =0(Man) ’ (18)
where N,, is the total number of events, and N, is the number of events with multiplicity n.
From Eq. (16), one obtains B
J
q=1 (19)

which should be fulfilled in the whole process of finding the proper values of a;. At first, we set all
a;sto 1/J. Then, we change each g; in turn by step £ = 1/2J to acquire maximum L value. When the
best values of a; are obtained at step &, we reduce the step & and find the better values of g; at the new
step. The change direction could be positive or negative. If a change is made for one a;, an extra factor
1/(1 + k) or 1/(1 — h) should be multiplied to each g; in order to fulfill Eq. (19). The last step used
in our calculation is 0.0001. Usually, a suitable number of g; is chosen according to the experimental
multiplicity distribution when the fit was performed. The dot-dashed line in Fig. 1 is the result of
J = 2 for the Monte Carlo sample which includes 10° events. The fit values (N,) of the event number
distribution are listed in Table 1. It can be seen from Fig. 1 that the maximum likelihood method can
well repress the effect of the measurement error of P,, We also calculated factorial moment of
continuous order for the distribution [3]

PP=m+1)%%"/Z (20)

where Z is a normalization factor. Unlike the Poissonian distribution, there exist not only statistical
fluctuations, but also dynamic fluctuations in P? distribution. At first, we generate a sample of 10°
Monte Carlo events according the P% distribution. Then we count up the multiplicity distribution P,



6 High Energy Physics and Nuclear Physics

Table 2
The calculated results of a 10° Monte Carlo event sample (P(,f) distribution).
n N® N,MC) N, q Fg)
0 52016.2 52231 52206.9 -1.0 7.7765 x 10®
1 27061.9 26955 27047.2 -0.8 2.1717 x 10
2 12193.0 12137 12103.6 —-0.6 1.5422 x 10
3 5179.5 5230 5124.6 -04 3.1475 x 10"
4 2130.3 2043 2107.2 -0.2 9.1117 x 10°
5 858.5 850 850.9 0.0 0.9978
6 341.1 343 339.3 0.2 —8.5623 x 107
7 134.2 132 134.1 1.0 1.0000
8 52.3 51 52.7 1.2 5.1967 x 10*
9 20.3 14 20.6 2.0 0.7846
10 7.8 10 8.0 3.0 -18.959
11 3.0 2 3.1 4.0 —-477.21
12 1.2 1 1.2 5.0 —9.8628 x 10°
13 0.4 1 0.5 6.0 —1.9438 x 10°

Notes: NV (,%): the event number distribution calculated according to Eq. (20); N,(MC): the
event number distribution for the Monte Carlo sample; Nn: the fit values of the Monte Carlo
sample using the maximum likelihood method.

and calculate a; and F{(g) by the maximum likelihood method. F(q) are shown in Fig. 2 with solid
circles. We have also applied Hwa’s method to expand this Monte Carlo sample P, and calculated the
a; and F(g). The results are listed in Table 2. It can be seen from Table 2 that the F(g) is totally
covered by statistical noise. The calculated results obtained by using Hwa’s method to analytical P,
are also shown in Fig. 2 in order to compare with the results of the maximum likelihood method for
the Monte Carlo sample. It can be seen that they are coincident with each other in the range ¢ > 0,
while in the range ¢ < 0, there are deviations and the deviation is much greater for large N. The above
results show that the original Haw’s method has distinct defect.

Fig. 2
The calculated results of F(q) for the P @ gdistribution.

Black circle: the calculated results using the maximum likelihood method for
the MC events sample. Solid line,(zc)iashed line, dotted line: the calculated

using Hwa’s method for analytic P, with N = 10, 15, and 20, respectively.
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5. EXPERIMENTAL RESULT OF THE FACTORIAL MOMENT OF
CONTINUOUS ORDER F(q)

Using the LEBC films offered by the CERN NA27 Collaboration, we measured the pseudorapidity
distribution of charged particles produced in 400 GeV/c pp collisions. 3730 non-single-diffractive
events were measured. The details about the measurement are described elsewhere [4]. The fractal
behavior of multiplicity production was investigated by using the method of factorial moment of
continuous order as mentioned above. In order to eliminate the influence of uneven pseudorapidity
distribution, the following normalized pseudorapidity x(y) [5] is used in the analysis

x(m) = me(n’)dn’ / f :: A(n) dn'. (21)

where [1n Tmad 15 chosen to be [~2, 2] and x is uniformly distributed in [0, 1]. x space is divided
into M bins with equal size 8. Counting up the experimental multiplicity distribution P, ,, in bin m,
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Fig. 3
The experimental results of the F(g) obtained by the maximum likelihood method.

Black points: the experimental results; solid line: the results of fitting the
F(g, 6) with Eq. (23); dotted line: the calculated results for MC events.
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Table 3
A comparison of D(q) obtained using different methods.

q D(g)(F@)) D(q)(F(g order)) D (G, order)
0 1

1 0.9868 + 0.0004

2 0.9764 + 0.0060 0.973 + 0.003 0.963 + 0.004
3 0.9654 + 0.0076 0.968 + 0.005 0.959 + 0.005
4 0.9535 + 0.0087 0.968 + 0.009 0.963 + 0.007
5 0.9400 + 0.0094 0.942 + 0.015 0.944 + 0.009

calculation P:ﬁ(xj,m, kj'm) by (8), determining a; ,, (j = 0, -, J) by the maximum likelitood method
according to Eqs. (16) and (18) (/ = 4 forM < 4and J = 2 for M > 4), then £,(q) 1S calculated for
bin m according to Eq. (12). At last, making an average over each bin

_ 1 ¥ 9
Fg:0) =37 2 T @2)

the factorial moment F(g, 8) of continuous order ¢ at bin size § is obtained. The results are shown in
Fig. 3 with solid points. In order to see the statistical contribution to F(q, 6) we made 3 sample of
Monte Carlo events. Comparing to the experimental data, the sample of Monte Carlo ewvents has the
same multiplicity distribution in the x space but no correlation. For event i with 7; particles, we
distribute these particles randomly through x space with uniform distribution. A total of 100 N,, events
have been simulated. The calculated results are also shown in Fig. 3 with dotted lines. It can be seen
that if there is only statistical fluctuation, the F(g, 6) remain constant approximately when & is
decreased and hence the intermittent exponents ¢(g) equal zero. This indicated that the statistical
fluctuations are filtered out.

When & - 0, we can get the intermittent exponent ¢(q) by fitting F(g, 6) with the following
formula (for M > 4)

~ 59
F(g,8) = & 23)

Then we can calculate multifractal dimension and multifractal spectrum using the relationg

1q) = 9-1-@(q), D(q) = w(q) / (¢~1);
a=duq)/dq, f(a)=qa-ug). (24)

The multifractal dimension D(g) versus g obtained from experiment is shown in Fig. 4, It can
be seen from Fig. 4 that the D(g) is monotonously decreased with increasing ¢. This means that there
is multifractal behavior in the process of multiplicity production in pp collisions. The results of the
Monte Carlo samples with particles randomly distributed in pseudorapidity space are shown in Fig. 4
with a solid line. It can be seen that D(q) = 1 at each g for the Monte Carlo samples approximately.
It means that the statistical fluctuation is filtered out by the method of maximum likelihood,

The calculated values of D(g) at integer g are listed in Table 3 in comparison with that obtained
by the ordinary scaled factorial moment and modified G moments. It can be seen that they are well
consistent with each other. So the method of the continuous order of factorial moment is syccessful.
The results of multifractal spectrum f(c:) are shown in Fig. 5. It is a convex curve With a maximum
at ¢ = 0, la0)) = D(0) = 1. The straight line flo) = « is tangent to the flc) curve at g = 1, The
black point represents the results of the Monte Carlo sample, which essentially condense to g single
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Fig. 4 Fig. 5
Fractal dimension D(gq) versus q. Multifractal spectrum f{o) versus o.
Open circle: the experimental value; solid line: Open circle: the experimental results; black circle:
the result of the Monte Carlo events. the results of the Monte Carlo events.

point, a = floe) = 1. The experimental multifractal spectrum is not a point showing that there is
multifractal behavior in multiparticle production at 400 GeV/c pp collisions.

6. CONCLUSION

The method of the factorial moments F, of continuous order suggested by Hwa has been tested.
It is found that using this method to analyze the experimental data cannot obtain satisfactory results.
Some improvements have been made for Hwa’s method, which makes it suitable for the analysis of
experimental data. The analytic results for the experimental pseudorapidity distributions of charged
particles produced in 400 GeV/c pp collisions indicated that the method of the factorial moments of
continuous order is feasible and correct. There is possibly multifractal behavior in the process of
multiplicity production in pp collisions at 400 GeV/c.
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