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With a density-, temperature-, and momentum-dependent mean field, five different
phases of nuclear equation of states (gas, liquid, super-heated liquid, super-cooled gas,
and mechanical instability of the spinodal phase) for Au are described. After
performing a simulation in coordinate space and in momentum space for these different
phases at finite temperature T = 6 MeV, all kinds of nuclear clusters are sorted by using
the coalescence model. The correlation analysis of the nuclear clusters demonstrates that
the multifragmentation pattern only comes from the mechanical instability of the
spinodal phase.
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1. INTRODUCTION

The process that the highly excited nuclei formed in intermediate heavy ion collisions decay into
many intermediate mass fragments (IMFs) with charge Z = 3 and light particles is referred to as the
multifragmentation. Extensive studies have been carried out throughout the world to provide a better
understanding of this process [1-10]. Its underlying properties are, however, not yet clear. One may
believe that the multifragmentation is related to some general features in nature such as scaling
properties.

Theoretical investigations have been developed along two different lines: the microscopic
dynamic approaches [7-10] and the phenomenological static models [4-6]. The dynamic approaches
are able to describe an entire process from the initial stage to the multifragmentation; the molecular
dynamics model [7] and nuclear transport theory [8] cannot, however, really describe the multi-
fragmentation because of the problems in the model or the problems of the numerical methods used.
The recently developed stochastic nuclear transport theory which incorporates dynamic fluctuations
is considered as a promising dynamic model for the nuclear multifragmentation [9-10], but progress
is slow because of its great numerical demands. In contrast, because of the complexity in the final
stage of collisions, the phenomenological static models such as the statistic model, are quite successful
in describing certain aspects of the multifragmentation [4-6].

Inthis paper, a static nuclear multifragmentation model is developed. The properties ofhot nuclei
formed in intermediate energy heavy ion collisions and the possible phase transition, multi-
fragmentations, the critical behavior, and intermittency are studied based on this model.

2. THEORETICAL MODEL
2.1. Equation of states and phase transitions of finite nucleus *’Au

We start with the extended Skyrme force [11], which is a density and momentum dependent
effective interaction. Innuclear matter, the single particle wave function is given by a plane wave. The
single particle distribution function at temperature T in the phase space is given by the Fermi-Dirac
distribution: ’
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The index #+ of the quantities denotes the neutron and proton parts, respectively. The chemical
potentials ., for neutrons and protons are given by:
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here g is a degeneracy factor. In the Hartree-Fock approximation [12], one obtains the density,
temperature, and momentum dependent mean field as follows [13]:

) ‘
Us=a¥+ap* +aPps +aPp*3 | )



Volume 21, Number 2 65

where,
Ca¥= "}T L[3F 2+ Dal
aP= —14— 53FQ2x,+Dal ,
. \s
aP= 167r2 [0 -x)+36(0+x) 11 £0) ™ (2\/n Cs (uy)

N

A
(. X RIS Y @
+§:—r2—- [t,<1+3‘2- >+t2(1+i2- )](1+a)3 (—-—2‘/;—7—{— ) cx )

a¥= ez 61 — [t4(l—-x)+3ts(1+xs)](li‘a)% (if— )sc% ()

a3 )l )Joso (2 ) o

where v = 1/6, f, = —2635 MeVim®, 1, = 385 MeVfm®, £, = —120:MeVf®, 1, = 15595
Merm3+37 t, = 0 MeVim?, t; = 0 MeVfm®, and x, = 0.09,x, =0, x, =0,x, =0, x, = 0, and

= 0 are the SKM parameters of the Skyrme force, e, N, and C,(r,) represent the asymmetry
parameter, the thermal wavelength, and the Fermi-Dirac integral, respectively,
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For finite nuclei, by considering the Coulomb and surface effects one obtains the followmg single
nucleon energy,
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Fig. 1
Pressure-density isotherms for the finite nucleus '*’Au.
—-+— is for the liquid-gas coexistence line; —-— is for the mechanical
instability line. :

where a? is the parameter of the surface energy term in the liquid drop model [14], T is the critical
temperature for the liquid-gas phase transition, and p, is the density of the ground state. From Eq. (8)
one can generate the ground state properties of infinite nuclear mater for different sets of the Skyrme
force [13]. The parameters of the SKM force will be used in this paper to give the ground state

*

effective mass _”_l”T = 0.79 and the ground state compression coefficient X = 215.5 MeV. The

pressure-density isotherms for '’Au are shown in Fig. 1. The critical point is defined as that in
thermodynamics. The limiting point is defined as the highest value of temperature at which the
pressure becomes negative. This is the maximum temperature of the finite nucleus. For ¥Au, the
critical point is at T, = 10.33 MeV and p, = 0.045 fm~3, while the limiting point is at T} = 8.40 MeV
and p; = 0.070 fm™3, Similar works can be found in Refs. [15-20].

2.2. Numerical simulations

The isotherms in the P—p phase diagram in Fig. 1 allow one to identify five regions: the gas
phase, the liquid phase, the super-heated liquid phase, the super-cooled gas phase region, and the
mechanically unstable spinodal phase. For very energetic collisions, the pressure remains positive for
all densities. Therefore, one can describe the process as an instantaneous vaporization, witharelatively
small fraction of composite particles in the final state. This is shown in the high temperature part of
Fig. 1. In the lower temperature region of the isotherm the pressure is negative. As the expansion
slows down in this region all will come to halt when all the collective kinetic energy converts into the
internal energy. Thus the system will oscillate back and forth along the isotherms. In these two cases,
there are no phase transitions. If there is a separation between a condensed phase and a vapor phase,
the thermodynamics becomes more complicated. The usual liquid-gas phase transition is a first-order
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transition that applies to processes occurring slowly enough for an equilibrium to be established across
the phase boundary in the system. The phase transition time scale is of the order of the evaporation
time, but the dynamic expansion is much faster. One may, however, consider a second possibility for
the breakup of the expanding system, the expansion is so rapid that the two phase equilibrium cannot
be established. Then the expansion proceeds along the curves of constant temperature into the domain
of metastable super-heated states as shown in Fig. 1. This transient regime is special also because it
exhibits negative pressure. For a thermodynamically stable state it has the largest entropy and lowest
free energy. The mechanically unstable system will expand until it reaches the minimum in P(p, T),
and multifragments will be formed by the many-body effects and then bounded by the mean field.

At the last stage of the real heavy ion collisions it may enter different regions of the P-p phase
diagram. The problem now is how to make realistic simulations of these states. We map the entire P-p
phase space for different density p and temperature 7, and then simulate each point (p, T) in a realistic
way. One can select a point (p, 7) in each region and sample it as follows.

(1) At temperature T = 0 MeV, we sample for proton and neutron, respectively, in coordinate
and momentum spaces as follows,

p(r)=9(R-r)p , )
F)=0(pP.—p) ,

3 3
where R = f’—A— is the bulk radius and Pz = h, l —:— n?p is the Fermi momentum. From Fig. 2,
\l TP :

one can see that 100 events can reach a realistic simulation.
(2) In the cases of T > 0 MeV, we sample in coordinate and momentum spaces as follows:

p(N=0 (R (T)-np ,

‘ 1 (10)
fp)= — 7 =

T
1+e™7F

3
where R(T) = l 43—A (1 + 0.00057?) is adopted from a thermal Hartree-Fock calculation [16] and
np

1 can be obtained from Eq. (2).

Note that here we actually simulate the nucleon distribution in r-space and in p-space in the final
stage of the reaction. This is independent of the models. From the distributions described above, we"
can determine all kinds of fragments in different regions of Fig. 1 by the coalescence model. We use
the 6-dimension coalescence model to determine the formation of IMFs as in Ref. [21]. Here we adopt
a parameter set of r, = 3.0 fm and p, = 200 MeV/c.

3. MULTIFRAGMENTATION ANALYSIS

From the definitions of the thermodynamic equilibrium and the mechanically unstable lines, one
can identify that, for "Au at T = 6 MeV, the densities for the mechanically unstable region, the
super-heated liquid region, and the hot liquid region are in the range of 0.01—0.07 fm~3, 0.08—0.11
fm™, and 0.12—0.15 fm?, respectively. We use T = 6 MeV because this line crosses all the regions.
The analysis for different temperatures will be addressed in a separate publication.

Measuring the charge multiplicity is a conventional method in the investigation of the nuclear
multifragmentation. However, only the correlation measurement can give a real signal of the multi-
fragmentation. In Fig. 4, we show the charge distributions of all fragments (Fig. 4a) and the
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Fig. 2
The mean distributions of '’Au in r-space (a-c) and
in p-space (d-f), at T = 0.
Numbers of events: 10; —— 100; =~ 1000; =+++ 10000.

correlation between the multiplicity of IMF and Z,,,,; (Fig. 4b), for the mechanically unstable phase,
the super-heated liquid, the hot liquid regions, and their mixing for *’Au at T = 6 MeV. Z,,,, is the
sum of the charges of all fragments with Z > 2 and the IMF is defined for fragments with3 < Z <
20 in this study. In the density range 0.01—0.15 fm~3, which is produced in the expansion process of
heavy ion collisions, there are two peaks which correspond to large clusters and light-charged
particles, respectively. Note that the window of the spinodal phase, namely p = 0.01—0.07 fm™3,
provides most of the produced IMFs. In contrast, the hot liquid region p = 0.12—0.15 fm™ and the
p = 0.08—0.11 fm™* region provide most of the large clusters. The spectra of the light particles and
IMF can be fitted by a power law distribution M, o< Z~*, with 7 = 2.53 £+ 0.15, 2.43 £ 0.16, 1.64
+ 0.13, and 1.91 + 0.20 for p = 0.01—0.15, 0.01—0.07, 0.08—0.11 and 0.12—0.15 fm~,
respectively. One can see that 7 = 2.53 4 0.15 corresponds to the mixed events and 7 = 2.43 4+ 0.16
for the spinodel phase are close to the experimental results [2].
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The mean distributions of *’Au in r-space (a-c) and

in p-space (b-d) at different temperatures.
— T =0MeV; — T = 5MeV; ———- T = 10 MeV; and
------ T = 15 MeV.

As mentioned above, only from the correlation analysis can one get a signal of the multi-
fragmentation. The smaller values of Z,, correspond to the events with many light nuclear fragments
and the larger values correspond to the events with only one big fragment. Both of them are normal
decays. From Fig. 4b, one can see that My is larger than 2 in the region of Z,,, = 22—65. The
maximum value of the IMF multiplicity can reach 9 at Z,,,,; = 40 and 56 for p = 0.01—0.15fm™>.
By comparing the curves in different regions, one observes that the curve in the spinodal region in the
range of Z .4 = 22—65 has the same behavior as the My curve. This means that the contributions
from the super-heated liquid phase and the hot liquid phase to M}, = 2 are only from the Z,,,,q =
66 region. One can conclude that the IMFs come from the spinodal region, i.e., multifragmentation
is due to the mechanical instability.
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Fig. 4
The charge distributions of all fragments and the power law ﬂt
(dashed lines) (a) and the correlation between the multiplicity
of IMF and Z,,,; (b) for the spinodal, the super-heated liquid,
the hot liquid phases, and their mixing for *’Au at T = 6 MeV.

4. CONCLUSION

A static multifragmentation model is developed in this paper. With a density-, temperature-, and
momentum-dependent mean field, we described five different phases of the nuclear equation of states:
gas, liquid, super-heated liquid, super-cooled gas, and mechanical instability of spinodal phase at

_ typical temperature T = 6 MeV. The isotherm can cross the liquid, super-heated liquid, and
mechanical instability of spinodal phases. From realistic simulations in 7-space and p-space for these
different phase regions for ’Au, we studied all kinds of nuclear clusters by using a coalescence
model. From the correlation analyses of these nuclear clusters, we found that the multifragmentation
comes from the mechanically unstable spinodal region.

There have been many investigations about the generic features in the multifragmentation. This
work suggests that the mechanically unstable spinodal phase of the nuclear equation of states is
responsible for the pattern of the multifragmentation in intermediate-energy heavy ion collisions. We
will discuss in our future work whether this conclusion provides some hints for basic laws in nature,
such as critical behavior and intermittency.
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