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A Solvable
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A 1+1 dimensional U(1) gauge model is proposed and the spectrum with the .
energy eigenstates represented in terms of fermion operators is exactly solved.

1. INTRODUCTION

Up to now, only a few gauge models are solvable except for the Schwinger model[1]. Although
the spectrum of the Schwinger model is solvable with different methods, no one can find the energy
eigenstates represented in fermion operators[2]. Our understanding about the structure of the gauge
theory is still very limited.

Recently the authors have found some exact solutions for the 1+ 1 dimensional lattice gauge
theory in which the energy eigenstates represented in fermion operators were given[3]. These results
give us more information about the gauge theory. In this paper our work is generalized to continuum
space. A 1+1 dimensional U(1) gauge model is proposed and the energy eigenstates represented in
fermion operators are exactly solved in the Hamiltonian formalism.

2. THE MODEL AND THE GROUND STATE

We adopt the Hamiltonian formalism and discuss the U (1) gauge group only. For the gauge
fields, we always choose the temporal gauge
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Let the Hamiltonian which describes a non-relativistic 1+ 1 dimensional U(1) gauge model be

H=— 5 dxE(2)! — :F jdﬂz(x)(a,‘ + ied () ()1, 22)

where e is a real coupling constant, F a real positive parameter, 4(x) the space component of the
gauge field and ETx) the electric field, and A(x) and E(x) satisfy the commutation relation

[4(=), E(z")] = —is(x — x'), (2.3)

¥(x) and ¥*(x) are the fermion fields with two components,

(5@ : :
6@ = (o) 9@ = @@ a6, (2.4)
Y(x) and ¥*(x) satisfy
(), §GD) =8z — ), {1* @), 2D} = 8z — £, @5)
Y, is taken as
1 0 :
““(0 _L» (2:6)

and the normal ordering acts only on the fermion creation and destruction operators defined by (2.4).
In fact, H can be rewritten as

H=%jhﬂ@’

— F [ 4:15 )0, + e AGDYEG) + (B, + ie ADYa* (D], @)

It is easy to determine that H keeps invariant under the following transformations:
(1) Local U(1) gauge transformation in spatial direction

A(@) > A(x) — 8.0(x), &(x)—> ™0y (), 28
(2) Space reflection
x> —x, A@x) > —A(x), o) =), (29)

where we must note that §(x) is not transformed as the usual case ¥(x) ~ y,¥(x).
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(3) Global y, transformation

b (2) = ™" (2), (210)
where « is a real constant.
Now we define the state |0 > as
E()|0) =10, §(=2[0) =0, n(=)[0) =0, (211)
Obviously
H10) =0, (212)

| 0 > is an eigenstate of A with zero energy. Neglecting the surface term at infinity, we can deduce

“

- H= —i— j de(x.)2 + F S dx((0;.— ied(x))E* (%)) (D, + i:A(x})é(x)
+ F [ 42000, + ie4())n*())(0s — fod(e)In (). (2.13)
Since
E(x)* = E(x),

((Bs + ied(@)E)* = (8, — ied(=))E*(x),
(8, — ied@n())* = (0, + ied(=))n* (), (214)

H is positive definite. Therefore | 0 > is an exact ground state of H.

3. THE SPECTRUM

Because of the symmetry of A, we need only consider the state with a pair of fermion and
anti-fermion. In general, a gauge invariant and translational invariant state can be written as

|E) = J"‘dx'fs(x — &)+ () Ty 0y (31)

Demanding that | E > satisfy the eigenvalue equation of H
H|E) = E|E), (32
we can easily derive the equation about f,(x)

% e |x[fa(x) — 2F0 s (x) = Efs(a). (33)
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It can be seen from (3.3), that the fermion and anti-fermion interact with the linear potential. Using
the condition that f-(x) must be finite at infinity, we can obtain '

(+) (=
< J’ dpcos(iF— P+ <x-—2—E—>p> (z>0)
3ez 2

e :

(=) (e - 4
& j‘ dpcos(ﬁ P+ (—x — 2—£—>p> (x <0), S
3e? e?

T

where ¢® are constants. According to the definition of Airy function[4]

fe(x) =

S I o Cpn

(3.5)

fe(x) can be represented as

P <<x _.%>/<i§>m> (x.> 0)
£ <<_r_ ZeE>/<4Tf>“’> (z <0).

Taking into account the continuity of fz(x) and df;(x)/dX at x = 0, for the state with even parity,

fe(x) = (3.6)

e = a7

the energy £ is determined by the equation

(—(28) (48} = o .
s(~(BNE)) 59
For the state with odd parity,

¢+ = — )

(3.9)

the energy E is determined by the equation

o (-(2)/(2)")-o

The first excited energy E, and the second excited energy E, given by (3.8) and (3.10) respectively

are
173
E, = 0.51¢? (i£> i

ez

Ey= 1.17¢ (ii)"’

2

¢ (311)
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When x + + o, the asymptotic behavior of Airy function is

#(a) ~ 5 #TemEN, (12)

Therefore, from (3.6) we can see that the fermion and anti-fermion are confined in our model.

4. RESULTS AND DISCUSSIONS

(1) A 1+1 dimensional U(1) gauge model is proposed in this paper. There exist fermions and
anti-fermions even though the model is non-relativistic. A similar concept is widely used in solid state
physics.

(2) The spectrum with the energy eigenstates represented in f@rmion operators 1s exactly
solved. The results show that the fermions are confined by the linear potential.

(3) The model is still solvable even when the mass term of fermions: 72 Jdxy™(x) yopr(x): is
introduced. In fact, we just need to let £ + E + 2m in the massive case.

(4) The significance of our results is that we can solve not only the spectrum, but also the
energy eigenstates represented in fermion operators. This will be helpful for the further study of the
gauge theory, including the lattice gauge theory, and even solid state physics.
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