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Derivation of Chiral Gauge Anomalies
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Through a covariant regularization of the chiral fermion current, we derive the
covariant fermion current divergence anomaly as well as the covariant Gauss
law commutator anomaly of the chiral gauge theory in the canonical formalism.

Anomaly is such that the classical symmetry of a theory is not preserved after
quantization. The chiral gauge anomaly is referred to the nonzero divergence of the chiral
fermion current. L. Faddeev recently found that [1] taking the gauge theory as the
projective representation of the gauge group, the fermion current divergence anomaly
corresponds to the 1-cocycle of the gauge group, He pointed out that the 2-cocycle of
the gauge group also related to the gauge anomaly, in the infinitesimal form, the anomaly
is the nontrivial center extension of the Gauss law operator algebra of the gauge theory.
The authors of Refs. [2,3] confirmed Faddeev's idea by calculating the Schwinger term of
the gauge algebra through the perturbative BJL method. The result they got satisfies the
2-cocycle condition, and is called the consistent anomaly. The definition is in agreement
with the consistent current divergence anomaly.

Atfirstlook, it seems that the most direct derivation of Gauss law anomaly is calculating
the equal time commutators. Until now, however, no one has arrived at Faddeev’s result
with a fixed time approach [4]. Besides, the covariant form of anomalies is undoubtedly
important for the anomaly study. In fact, these two problems are both related to the
regularization. In this short article | first introduce the residual reguiarization for the bilinear
fermion fields operators, then derive the covariant fermion current divergence anomaiy
and Gauss law commutator anomaly of the chiral gauge theory through the fixed time
method in the canonicai quantization procedure, and finally discuss the obtained result.
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This work is done in 1 + 3 dimension. Taking Weyl gauge, where AS = 0, the system
in which the chiral fermion,

& (%) = H_Ty’qb(x),

along with the gauge field can be described by the following Hamiltonian

H= [ 28 s + 22.) (1a)
B ‘ghrml = ¢’Z(x)747’i(ai + Al)d’L(") (1 b)
S, = % Ef(%) E3(x) + 4i Fo(x) F2(x) (1c)

The canonical quantization requires the basic equal time commutators

[Ei(®),4}(y)] = is,;6%8%(x — ),
{‘I’G(x) 3¢’-p+(}')} e 5“83(x e y)s others =0, (2)

Define the classical current, /4(x) = £ (@77, T4, (x), here T? are the generators
of the gauge group, and T*"= — T It is well known that the products of the fermion fields
defined at the same time-space point will lead to singularity after quantization. The cure
usually is the regularization. Now we define the fermion current and fermion Hamiltonian
operators through the residual regularization

2@ =i = § E @ Lo pu, @

o perms () = EF s (%) = é i:— Fr(x)7,D; —L - Pr(x) 5 )
¢2ni z— D
where the Hermitian operator D = j¥;D; = ir,(8; + 4;) and the integral path on the
complex plane z, C, encloses all the poles of the regulator 1/(z—D2). It is obvious that the
regularization is manifestly covariant.
Expanding the fermion field y(x) in the eigenstates of the fermion energy operator H

= 7,7v;D; ,

G(E) = D aupat >, Fipas
E >0 En<0
we have {a,,al} ={8,.8%} =5, .; Correspondingly, define the fermion vacuum state

under the quantized background configuration A(x) as | ). So that nl D4 = Bal Da
= 0.

Consider the Hamiltonian equation of the fermigr:charge

;:(x) = —‘[;3<x)’ ﬁFermi =+ g,{]- (5)
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Using the commutator relations (2), it is easy to show the first term of the above
commutator

1[]‘8(7) 3ﬁFermi] = (D,;,(f) )a. (6)

On the other hand, noticing there is the electronic field density Ea(x) (could be written

as i’/ §4i(x)) in Ha and the regularized charge density dependence on the gauge
potential Aa(x) it is possible that the second commutator in (5) has nonzero contribution,
which will give the current divergence anomaly Now, let’s calculate the vacuum expecta-
tion of the commutator between Eb {x) and /o(x)

Al E5() Da = <“ 3 é‘A"(y) ez ¢f (= )T" <bz_(x)>
s 3 iy dz 1 + P ry B 1
‘}ll-'s é 271; T T 6[4?(}’) ol Dz‘ P—(x,}‘)3 (7)

here Tr denotes the trace over Dirac matrix and the gauge index, and P.(x,y) is the negative
energy project operator

P_(z,y) = N = —ipe(x—y

SEPIREOLHO [ L2 G5 PP, (®)

Its Fourier transformation P_(p) could be perturbatively expanded as
P_(p) = > P9(p) (9a)

i=0 ,
PO =L (1 + L), (7 p =), (ob)
P = [ _PE ity j

@ = | e A

. <7k74 _rerip+ ) - 'fr‘> (9c)
lpllp + &

Substituting (8) and (9) into (7), moving the factor e”*™ 1o the left of the operator

1
7 — D » then taking the limit h->x, it leaves an infinite summation in (7)

. 1 =5 (D'*)n

lim pele=h)

A>z _Di & =0 (Z podi pl)n+l (103)
(D')* = 2p,D; — D} — —TYF (10b)

Duetotheactions of Trand 56 Zd—z in (7), onlythefirst three terms in the infinite summation
€ Lms

(10a) have nonzero contributions to (7). After a few calculations, we arrive at

aCil8(=) s E} () 1) = 8’””’Term{T‘ T*}6%(x — y) (11)
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From (11), (6) and (5), we get the current divergence anomaly

(Ddae == Lo T B, ), Fa)). (12)
T
Now we turn to the Gauss—law commutator anomaly. The Gauss law is GZ(x) = 0,
which is the first class constraint, where the operators G?(x) satisfy the gauge algebra

[G*(#),G’(y)] = if*G*(2)5°(x — y), (13)

are the generators of the gauge group: G*(x)= — (D - E(x) )“ + j5(x). After quantiza-
tion, it is possible that (13) has a center extension denoted by wab (xy). Let’s calculate the

vacuum expectatlon(wa (%,y)4, which is the Gauss law commutator anomaly.
From (3), (9) and (10), we get

(LG5 B 14 — i (5() Y a8 (x — )

1 eURTrF(({T°,T?}8;) + {T*,[ A, T*1})8(x — y). (14)

1677

we also have

[(D; -+ E;)*(x),(D;E;)*(y) 1 — if***(D; - E;)(x)8%(x = y)=0 (15)

It means that there is no anomaly in the algebra of the gauge transformation generators
of the gauge fields. And from (11) we find

aSL(D:E; )" (), 15(3) 1D a = 4(D¥[ E"(x)aIOCy) Da
= = 5 SRTF (TS T8, + ([T 41, T* DS (s — ). (16)
Putting together (14)-(16), in a compact form, we can write the covariant Gauss law
commutator anomaly as

(] #sere@ oo e, ;1 - G @3 ~ 1),

= 1_61712— S‘Ao’.kj’ d&*2TtF;y(«D;v + D;ou), (17)

Finally, we have two discussions. 1. A comparison with the consistent anomaly. It is
clear in the case of the current divergence anomaly that the covariant form and the
consistent form are only different by a redefinition of the fermion current. When we take
another regular operator in (3), we will come to the consistent form of the fermion current
divergence. For the Gauss law anomaly, however, there is no relation between the two
forms established. This is because the covariant form is derived in the paper by the
canonical formaiism and the consistent form is given by the BJL approach, which is a
non-canonical formalism and surrounds non-zero commutators between different com-
ponents of electronic fields, and we don’t know how a canonical formalism can gotoa
non-canonical formalism. 2. There might be a way to analyze the covariant Gauss law
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commutator anomaly in the language of the differential geometry. Faddeev’s 2-cocycle,
identified as the consistent Gauss law anomaly, is derived from a 6-form by descending it
toa 3-form (inthe D = 4 space-time), and the 4-form in the series of forms, i.e. 1-cocycle,
is the consistent anomaly. Ref.[3] suggested a similarity of the derivation in the covariant
case and gave the covariant current divergence anomaly. The series also gives the
covariant Gauss law anomaly. We will discuss the issue in detail elsewhere[7].
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