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In the framework of the fixed-scattering field theory, we construct microscopi-
cally a second-order pion-nucleus Iso-elastic optical potential by including
two-nucleon correlations. The double charge exchange reactions to the double
isobaric analog states are calculated by using our theoretical optical potential.
For the incident pion energies ranging from 0 to 300 MeV, the S and P partial
waves are included in the zN amplitude.

l. INTRODUCTION

It has been a long-standing goal of nuclear structure physics to understand the
two-nucleon correlations in nuclei. Unfortunately, in most nuclear reactions the effects of
these correlations occur only as higher-order corrections. Since there are at least two like
nucleons involved in the pion double-charge-exchange (DCX) reaction, it might be very
sensitive to these correlations. In recent years a lot of DCX experimental data have been
published. These data provide a good opportunity for us to investigate these correlations.

In the study of the double-charge-exchange reaction to the double isobaric analog
state (DIAS DCX), the conventional first-order optical potential method encountered two
difficuities [1]. 1) Around 50 MeV pion incident energies, the theoretical forward cross
sections are much smaller than the experimental data: 2) In the (3.3) resonance region

near 160 MeV, the theoretical disposition of the angular distribution is larger then the
experimental value.
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How to explain these phenomena? Now there basically exists two different directions
for the theoretical development. One is to introduce new degrees of freedom in nuclei,
such as Azz components [2], virtual meson exchange currents [3] and six-quark cluster
[4], etc. The other one is to consider the higher order effects of nuclear correlations at the
pure nucleonic level [5,6].

We think that even if we need to introduce the new degrees of freedom in nuclei, we
must first ascertain the contributions of the pure nucleonic mechanisms. In this work we
construct a second order pion-nucleus |so-elastic optical potential microscopically in the
framework of the fixed scattering field theory, and compare it with the first-order optical
potential. Then, using this theoretical potential, the DIAS DCX differential cross sections
are calculated and compared with the experimental data.

2. THEORETICAL FRAMEWORK

We refer the pion-nucleus elastic, single-charge-exchange (SCX) to the isobaric
analog state and double-charge-exchange (DCX) to the double-isobaric analog state as
Iso-elastic scattering. They are related by applying the isospin symmetry for the strong
interaction. When isospin breaking effects can be ignored, the Iso-elastic scattering can
betreated theoretically on the basis of an Iso-elastic optical potential of the following form:

02U+ U~ T) & Ul » Y, (2.1)

where ¢ is the pion and T the nuclear isospin operator, Uo, U1 and Uz are the so-called
isoscalar, isovector and isotensor terms respectively. '

Inthis framework, the pion wave function satisfies the following Klein-Gordon equation
(V2 + &) d(r) = Oy(r). (2.2)

A
If U is given, we can obtain the Iso-elastic scattering cross sections by using the
coupled chaQneI method to solve this K-G equation. Therefore the problem now is how
to calculate U."

The relationship between Ui = 0,1,2) and the physical elastic optical potential ytm
(m= +,0-)forz™, 2% and x~ can be expressed formally as[5]

Uy= (U + U = 209) /[T (2T, — 1)1,
U= (U®— U(+_))/Ta & roUn (2.3)
Uo 5y U(O) ™ ToU;,

where Ty is the isospin quantum number of the nucleus.
In principle Uo, U1 and U2 may be caiculated microscopically by an expansion in terms
of the number of active nucleons. This is usually referred to as the density expansion:

Ui=UP+ UP + ... (2.4)
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FIG. 1 Two-nucleon processes contnbutmg to the pion-nucleus optical
potential.

where the superscript (i) indicates the number of active nucleons.

In this paper we calculate the second-order optical potential U )in the framework of
the fixed scattering center field theory [7].

The main terms contributing to the second-order optical potential are shown in Fig.
1. Figs. 1(a) and (b) are the direct and Pauli exchange terms respectively. Fig. 1(c) is a
contribution from the iteration of the first-order optical potential. This term must be
subtracted from the sum of Figs. 1(a) and (b) in order to avoid double counting.

The basic ingredient in our calculation is the N scattering amplitude. For pion incident
energies T 300 MeV, S and P partial waves dominate the N amplitude we may write

E(k, k)= FE9(k, k) + FO(k,R), (2.5)
, K oR)o(R) sy .
Bk B = e A &8
j 102 kR, k)=~ ”(1( )”(k) ik - B
( ) 4“ ———,(m [4? |
+id-o- (KX E)], (2.7)

where the form factor is taken to be v(k) = (1 + k2//3"")'1 with§ = 4.82 fm™", and ko is the
corresponding on-shell momentum of the pion

i"’ s 1(:) o i 1(;)(‘# T) ,
=20 + zi (e T, 2.8)

I =2 + 2i (- T),
where 1, 2§, A, 2, 1, and 1§ are obtained from the phase shift analysis of
Ref.[8]. ‘

Within the framework of the fixed scattering center field theory, the second-order
scattering operator can be expressed as

Tm(k’9 k; T;—71y) = j (; k)la [—47'Fz(k kx)] g(ku r,—r)

*T(ry—r) - [—4=F(k, R)], (2.9
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where I'(r) is the pair distribution function of the two nucleons in the nucleus, gtki, r) is
the pion propagator in the nucleus,
iker
R,r)= L2
g(hk, r) ké—ki—U“’-i-in
The pion-nucleus optical potential can be obtained by averaging the scattering
operator over the nuclear wave function. )

(2.10)

Um(Ry R) = {po; B ym|T | d0; &> m) (2.11)

where ¢q is the nuclear ground state. k! k2 are the incoming and outgoing momenta of the
pion respectively. m = +,0,- indicates the charge state of the pion.

By substituting U™ into Eq.(2.3), we obtain the second-order correction to the
Iso-elastic optical potential. The details of the calculation of U™ are very similar to that in
Ref.[9]. For the nuclear density matrix we use the revised local Fermi gas model which
has been shown to be a good approximation [10].

The final second-order optical potential in momentum space can be expressed as

UP(k, B) = [ dReTwRUD(K , R, R) 2.12)
whereq = k' -k, R = 1/2(r1 + r2), and
US’)(k'9 k: R) — k%f‘"(ko, R) -+ kg‘k' * ‘k§§")(kaa R)
+ 31- Ki(1 + ey - )& (ko R) (213)

here £¢(£{*?’) corresponds to the contribution from the pure S(P) wave, £¢?) is the
contribution from the interference term of the S and P wave amplitudes.

3. RESULTS AND DISCUSSIONS FOR THE SECOND-ORDER OPTICAL
POTENTIAL

Since the P wave part dominates the zN amplitude in the (3.3) resonance region it is
generally believed that only the P wave component should remain in calculating the
second-order optical potential. But we find that this is not the case.

TABLE 1.
Parameters of the N Amplitudes at 50 MeV and 164 MeV (unit: fm’3).
T.(MeV) Ado A%, AL A%
50 —1.1+0.7 —9.5 — 0.4/ 8.0 + 1.0¢ 9.6 4+ 0.9

164 —0.7 + 0.4¢ —2.3 +0.1¢ 3.2 +9.5¢ 3.7 + 9.5¢
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In Table 1 the parameters of the zN amplitude are given for Tz = 50 MeV and 164
MeV. At Tr = 50 MeV the S wave is obviously not negligible. At Tx = 164 MeV, since Up
and U1 are proportional to 100, and 1% 3> 1%, the effects of the S wave component to U0
and U1 are very small. In other word, the P wave is dominant. However, Uz is proportional
toAo1, namely, the pure P wave contribution term U$??’ec (14)? and S-P interference term
U oc 223, + 2. The real parts of the S and P wave amplitudes are comparable at 164
MeV (Re Ao1 = 2.3 fm™ and Re Ag1 = 3.7 fm'3). Therefore the contribution from the S
and P wave interference term is not negligible for Uz. In this paper we calculate the
Iso-elastic optical potential for 80 by including both the S and P wave zN amplitudes.

In order to compare the contributions from S and P wave amplitudes easily, we

consider the case of &’ = k. Then the second-order optical potential in coordinate space
is

+ UP(kos k) = KLE¥ (ko5 R) + £§P(ko> R) + E§9(ko5 R)] (3.1)

For practical applications it is useful to parametrize the optical potential as a function
of p and Ap. One of such parametrizations is suggested in Ref. [5]. For &’ = k = kg and
T = 1, the following form of the optical potential is assumed,

ng)(ko: R) e _kglopz(k)/l?o,
UP(ke» R) = — -;— K0(R) Ap(R)/ oy (3.2)
U(zz)(kos R) - _kglzép—(&sv
Po

where p is the density of the nucleus, Ap the density distribution of the valence nucleons,
po the central density of the nucleus, which is taken to be 0.16 fm™, and

2= lSn) + lS’P) N J_SPP). (33)

Since the Iso-elastic scattering near the (3,3) resonance is dominated by interactions
near the surface of the nucleus, only the optical potential near the surface is important. It

Re A 2(fm3)

00 200 300
Tn (Mev)

FIG. 2 Real part of A2 as a function of the pion incident energy Txz. The

dot dashed line is the result by considering only the P wave, and the solid

line is that by considering both the S and P wave amplitudes.
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is found that the 1/ has a weak dependence on R near the surface, thus, as agecd
approximation, it can be taken as a constant. We evaluate themat R = 3.5 fm in this paper.

In Fig. 2 we show the real part of 12 vs. the pion incident energies Tx ranging from 25
10 300 MeV. The dot-dashed line is the resuit by considering only the P wave, and the solid
line is that by considering both the S and P wave amplitudes. We find that the contribution
of the S wave part is quite important, even at the peak of the (8,3) resonance around 164
MeV. The effect of the S wave to Uz is not negligible.

For the isoscalar and isovector parts (1o and A1), the contribution of the S wave
7N amplitude is not very important in the (3,3) resonance region . Only about 20 ~
30% correction to the first-order optical potential attributes to the S wave component.
Thus the P wave is dominant. The calculation coincides with our previous analysis.

In the following we will examine the importance of the second-order correction to the
total optical potential. Since there is no Uz term in the first-order optical potential, the
second-order contribution is the leading term for U2. We compare the total (first-plus
second-order) optical potential with the first-order one at energies Tx = 50 MeV and 164
MeV for Up and U1 in Fig. 3. It is found that the first-order contribution is the dominant one
and the second-order contribution is only a small correction at 164 MeV. But at 50 MeV,
the second-order contribution becomes very important, especially for U1. The second-
order contribution to U1 is larger than the first-order one, and thus becomes the dominant
one. This is due to the fact that U{® ec (2§ + 13), while 2& and A, are nearly equal
and have an opposite si%n at 50 MeV. This cancellation of S and P wave parts makes Uﬁ”
nearly zero. Therefore U,2) becomes a dominant term.
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FIG. 3 Comparison of the second-order optical potential (solid line) to
the first-order one (dot-dashed line) at T = 50 MeV (upper part of this
figure) and 164 MeV (lower part).
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4. APPLICATION OF THE ISC-ELASTIC OPTICAL POTENTIAL TO THE DIAS DCX
REACTION

When only the S and P wave =N amplitudes are considered, the first-order optical
potential has the following form:

UPR(R, k, R) = K(E + fep « ;) (4.1)

where E and § correspond to the S and P wave term respectively.
The second-order optical potential obtained in Eq.(2.13) has a similar form:

UP(k',k, R) = k(AE + Afey - ey) 4.2)

where

AE — g(n) -+ = g(:p)

AE = FP) - — §"P’ (4.3)

The specific form of the optical potential adopted in this paper is the one used in
Refs.[5,6], namely,

U(R) = V [§(R) + A§(R)]V KLE(R) + Af(R)]
— = (I’x = 1)V’§(R) SSies (Pz — DViE(R) (4.4)

Considering the true absorption of the pion an absorption term needs to be added to
the optical potential, i.e.,

U(R) = U®(R) + U(R) + Uu:(R) (4.5)
where U,;, can be parametrized as the following form
Uas,(R) = 4x[ Bop*(R) — VCop?(R)V] (4.6)

where the values of Bo, Co in the energy region between 0 to 300 MeV are obtained from
Ref.[11].

By using the coordinate-space computer code PIESDEX [5] and the obtained optical
potential, we solved the isospin-invariant coupled-channel Klein-Gordon equation. The
DIAS DCX reaction 180(:: n')Ne18(g s.) is evaluated numerically.

In Fig. 4 we show the calculation for the anguiar distributions at 7z = 50 MeV. Curves
1and 2 correspond to the results either without or with the inclusion of the true absorption
term in the optical potential respectively. The result of the first-order potential is not given
because it is too small (do/d<2 (0°) = 0.005 xb/sr). We can see that curve 1 is nearly one
order of magnitude higher than the experimental data while curve 2 is more than one order
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FIG. 4 Angular distribution at Tz = 50 MeV. Curves 1 and 2 correspond
to the results without and with the inclusion of the true absorption term
the optical potential respectively.

of magnitude lower than the experimental data. This is because our theoretical micros-
copical optical potential has the so-called Kisslinger singularity [12] for energies between
40 ~ 100 MeV. The Kisslinger singularity is the intrinsic defect of the Kisslinger - form
optical potential. In the singularity region the results are very sensitive to the parameters
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FIG. 5 Angular distributions at Tx = 164 MeV and 292 MeV. The dot
dashed line and the solid line correspond to the results by using the first-
and second-order optical potentials respectively.
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of the optical potential and, therefore, are less meaningful. Nevertheless, from the
comparison of the second-order optical potential with the first-order one, the nucleon-
nucleon correlations play a very important role in the DIAS DCX reactions at low energies.
We should use the DWBA method to study this reaction.

In Fig. 5 the angular distributions for Tx = 164 MeV and 292 MeV are shown. We
found that the second-order optical potential gives some improvements on the results.
The disposition of the angular distribution shifts toward smaller angles and the cross
sections at large angles increase. But it is still far from satisfactory for Tz = 164 MeV.

In all our calculations the true absorption term is included in the second-order optical
potential but curve 1 in Fig. 4. No free parameters are introduced.

5. SUMMARY AND CONCLUSIONS

From this investigation we may conclude as follows:

(1) At low energies around 50 MeV the strong cancellation between the S and P wave
zN amplitudes leads to a forward-angle minimum for the DIAS DCX reactions in the
conventional first-order optical method. Therefore the second-order optical potential
becomes the dominant term and it can enhance the DIAS DCX forward-angle cross
sections greatly at low energies. Even in the (3.3) resonance region it increases the cross
section significantly.

(2) In the (3.3) resonance region it was believed that the (3.3) resonance part
dominated the =N amplitude, therefore the contribution of the S wave was neglected. But
our results show that though the contribution to the isoscalar and isovector parts of the
optical potential from the S wave part is negligible, the effect to the isotensor part,
especially to its real part, is very important. Even in the (3.3) resonance region the
contribution of the S wave #N amplitude to the DIAS DCX reaction cannot be neglected.
By considering both S and P wave zN amplitudes the angular distribution functions are
improved. The dispositions shift to the smaller angles, the large-angle cross sections are
enhanced. But still it cannot reproduce the experiment data satisfactorily.

To be short we conclude that within the pure-nucleonic approach, the two-nucleon
correlations and the S and P wave =N amplitudes are all very important and should be
considered together for the DIAS DCX reactions. However it is still not enough to explain
the experimental data by considering only these factors. We need to improve the theory
and study some new mechanisms.
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