原子核的连续介质模型

胡济民 (北京大学)

摘 '要

本文将原子核看成一连续介质,其能量及密度由一假设的能量泛函经变分 法求出.式中所含参量由拟合核质量及电荷分布的平均行为给出.用本文公式 算出的镜象核质量差与实验值的偏离在4%以内 (A≥20),较液滴模型有较 大改进.文中还讨论了用这模型处理核密度的多极振荡问题,初步的计算结果 与实验符合的情况是好的.

一、引言

把原子核看成是连续介质,由此推算或解释核的某些性质,是最早发展的一种核模 型,即液滴模型。这是一个很成功的模型,有相当广泛的应用。这种模型除了推导出著名 的质量公式外,还用来解释核的集体运动,巨共振现象以及重离子核反应等,取得了一定 的成功. 这种模型和壳校正理论相结合,能够更精确地计算核的质量,核的基态形变,以 及形变位能曲面,裂变位垒等。 液滴模型质量公式所引人的参量还可以用费米气体模型 或核物质理论进行估算"1-3"得到一定的解释。但是把原子核看成为一个不可压缩的,均匀 带电的液滴是一个粗糙的近似,不免会影响这种模型应用的可靠性。如所周知,核内的物 后和电荷分布并不均匀,特别是在核边缘上有一个相当厚的弥散层(2fm 以上^[3]),处于边 界层的核子数占总核子数的 1/2-1/3. 也有人认为,可以把原子核看成是一个有薄壁的 液滴,从而把核的质量公式按 $A^{-\frac{1}{2}}$ 展开^[4]. 在这种思想指导下, Myers 和 Swiatecki 发展 了小液滴模型^[5,4]。这种模型在一定程度上考虑了核物质和电荷密度的变化;但对于边界 层仍然看成是薄壁,做了近似的处理. 这样推得的核质量公式所包含的参量比同一组作 者过去的质量公式⁽⁷⁾要多得多,应用同一壳校正方法,与实验值符合的情况仅略有改进^[6]。 这一类模型的主要缺点在于没有充分考虑核物质和电荷密度的变化。对处于大形变或高 角动量状态的核,人们有理由预期,核物质和电荷密度会有较大的变化^[3] 因此,采用可 变密度的连续介质模型更为合理。此外,仅就质量公式说,由于含有若干可调参量,与已 知核质量的符合情况,各种公式不会有较大的不同,但是,推广到未知领域,如超重核和远 离 β 稳定线的核,就可能出现差异,这也是值得探讨的问题。

已经有一些工作讨论过密度可变的连续介质核模型^[9,10], Brueckner 等人在这方面做

本文 1980 年 9 月 16 日收到.

过工作. 他们根据核物质理论计算的结果提出一个表示核能量的密度泛函,再根据变分 原理导出确定核物质密度的微分积分方程,由此可以算出原子核基态的密度和能量. 但 是这种计算相当繁,而结果的精度与液滴模型比较,相差还很远,并不能用来代替液滴模 型. 他们的计算结果表明,在远离 β 稳定线的区域,和液滴模型相差相当大. 这至少表 明,把液滴模型质量公式应用于未知的领域,是应该慎重对待的问题.

本文引入一种连续介质核模型. 在这模型中核的能量也由一密度泛函所给出,在采 用适当的近似后计算比较简单. 适当选择参量,所得质量公式与实验的符合情况可以和 最佳的液滴模型相比较. 我们将介绍应用这种模型来计算镜象核的质量差和巨偶极共振 的问题. 最后简单地讨论一下这模型其它可能的应用.

二、能量公式

我们假设核的结合能由如下的密度泛函给出

$$E[\rho_{N}, \rho_{Z}] = \int \left[-a_{1} + a_{2} \frac{(\rho - \rho_{0})^{2}}{\rho_{0}^{2}} + a_{3} \frac{(\rho_{N} - \rho_{Z})^{2}}{\rho_{0}^{2}} \right] \rho_{0} dv$$

+
$$\int \left[a_{4} - a_{5} \frac{(\rho - \rho_{0})^{2}}{\rho_{0}^{2}} - a_{6} \frac{(\rho_{N} - \rho_{Z})^{2}}{\rho_{0}^{2}} \right] |a \nabla \rho_{0}| dv$$

+
$$\frac{1}{2} e^{2} \iint \frac{\rho_{Z}(\mathbf{r}_{1})\rho_{Z}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} dv_{1} dv_{2} (1 - \alpha Z^{-\frac{2}{3}}), \qquad (1)$$

式中 ρ_N, ρ_z 分别为核内质子和中子密度,满足归一化条件

$$\int \rho_N dv = N, \quad \int \rho_Z dv = Z, \quad \rho = \rho_N + \rho_Z, \quad (2)$$

 $a_1 \cdots a_6$ 为可调参量. 式 (1) 的物理意义很明显,右方第一个积分为体积能,第二个积分为表面能,第三个积分为库仑能,因子 (1 – $\alpha Z^{-\frac{1}{3}}$)表示库仑能的交换修正^[11], $\alpha = 0.7636$. 式中 ρ_0 为引人的一个参考密度,如忽略库仑能,且 N = Z,则 $\rho = \rho_0$, $\rho_N = \rho_Z = \frac{1}{2} \rho_0$ 给出能量的最低值. 在一般情况下, ρ 和 ρ_0 的差别也不很大, 而 ρ_N 和 ρ_Z 则接近于 $\frac{N}{4} \rho_0$ 和 $\frac{Z}{4} \rho_0$. 我们取 ρ_0 为费米分布

$$\rho_0 = \frac{t}{4\pi a^3} \cdot \frac{1}{1 + e^{\frac{r-R}{a}}},$$
(3)

这是比较接近实验测定的核物质密度分布的, a 和 t 为待定参量, R 由条件

$$\int \rho_0 dv = A$$

所决定,为核的半密度半径.对于变形核,R为球坐标 θ , φ 的函数.曲面 $r = R(\theta, \varphi)$ 实际上规定了核的形状.由于引入 ρ_0 ,并由它来决定核的形状,这就大大简化了变分计算.

为了进行变分,令

$$\rho_{N} = \frac{N}{A} \rho_{0}(1 + f_{n}); \quad \rho_{Z} = \frac{Z}{A} \rho_{0}(1 + f_{Z});$$

$$\varphi = \frac{N}{A} f_{n} + \frac{Z}{A} f_{Z}; \quad \chi = \frac{N}{A} f_{n} - \frac{Z}{A} f_{Z};$$
(4)

式(1)可以改写为

$$E[\psi, \chi] = \int [-a_1 + a_2\psi^2 + a_3(I + \chi)^2]\rho_0 dv + \int [a_4 - a_5\varphi^2 - a_6(I + \chi)^2]\varphi\rho_0 dv + \frac{e^2}{2} \left(\frac{Z}{A}\right)^2 (1 - \alpha Z^{-\frac{3}{2}}) \times \iint \frac{\rho_0(1) \left[1 + \frac{A}{2Z} \left(\psi(1) - \chi(1)\right)\right] \rho_0(2) \left[1 + \frac{A}{2Z} \left(\psi(2) - \chi(2)\right)\right]}{|\mathbf{r}_1 - \mathbf{r}_2|} \cdot dv_1 dv_2$$
(5)

式中 $\varphi = \frac{a}{\rho_0} \cdot |\text{grad } \rho_0|; I = \frac{N-Z}{A}$. 结合能的极小值即由 $\delta E = 0$ 给出。变分时,函数 ϕ , X 应满足条件

$$\int \psi \rho_0 dv = \int \chi \rho_0 dv = 0.$$
 (6)

对(5)进行变分,由 8E = 0 得到

$$a_2\psi - a_5\psi\varphi + \frac{A}{2Z}v = \mu, \quad a_3\chi - a_6\chi\varphi - a_6l\varphi - \frac{A}{2Z}v = \lambda, \quad (7)$$

式中

$$v(\mathbf{r}) = \frac{1}{2} e^2 \frac{Z^2}{A^2} \int \frac{\rho_0(1) \left[1 + \frac{A}{2Z} \left(\varphi(1) - \chi(1) \right) \right]}{|\mathbf{r} - \mathbf{r}_1|} dv_1, \qquad (8)$$

 μ , λ 为朗格拉日乘子,由条件(6)所决定.式(7)是一组联立积分方程,可用迭代法求 解.在通常情况下 $\frac{A}{2Z}(\phi - \chi) \ll 1$,因此, $\nu(r)$ 可近似地用 $\nu_0(r)$ 来替代,

$$v_0(\mathbf{r}) = \frac{1}{2} e^2 \left(\frac{Z}{A}\right)^2 \int \frac{\rho_0(1)}{|\mathbf{r} - \mathbf{r}_1|} dv_1$$

这样,式(7)就变成代数方程,其解为

$$\psi = \left(\mu - \frac{A}{2Z} \nu_0\right) / (a_2 - a_5 \varphi),$$

$$\chi = \left(\lambda + \frac{A}{2Z} \nu_0 + a_6 I \varphi\right) / (a_3 - a_6 \varphi),$$
(9)

$$\mu = \frac{A}{2Z} \int \frac{v_0 \rho_0}{a_2 - a_5 \varphi} dv / \int \frac{\rho_0}{a_2 - a_5 \varphi} dv,$$

$$\lambda = -\left[a_6 I \int \frac{\varphi \rho_0}{a_3 - a_6 \varphi} dv + \frac{A}{2Z} \int \frac{v_0 \rho_0}{a_3 - a_6 \varphi} dv \right] / \int \frac{\rho_0}{a_3 - a_6 \varphi} dv,$$
(10)

以(9)式给出的 ψ 及 X 代入 (5),即可求得能量的极小值

$$E = E_0 + \Delta E, \qquad (11)$$

$$E_{0} = -a_{1}A + a_{3}l^{2}A + (a_{4} - a_{6}l^{2}) \int \varphi \rho_{0} dv + \frac{1}{2} e^{2} \left(\frac{Z}{A}\right)^{2} \iint \frac{\rho_{0}(1)o_{0}(2)}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} dv_{1}dv_{2}(1 - \alpha Z^{-\frac{2}{3}}), \qquad (12)$$

$$\Delta E = -a_6 I \int \chi \varphi \rho_0 d\nu + \frac{A}{2Z} \int \nu_0 \rho_0 (\psi - \chi) d\nu, \qquad (13)$$

这里, E_0 就相当于液滴模型的结合能公式,不过表面能和库仑能有些差别,而 ΔE 则为密度偏离 ρ_0 而引起的,它总是负的。 对于轻核 (A < 60),这一项的贡献可以忽略。 当 $A \sim 200$ 时, ΔE 可达 -20—-30 MeV。 由此可见,引人参考密度 ρ_0 ,可以大大简化计算,而所得公式很接近液滴模型的公式。

三、参数的选择

在我们的公式中包含 a_1, \dots, a_n, a_n, t 等 8 个参量。我们将首先选定 a_n, t ,然后根据 实验测定的核质量来定其他参量。确定 a_n, t 的原则为 (i) 尽可能使 ρ 接近实验测定的密 度分布的平均行为。实验测得的 a 值一般在 0.5—0.6fm 之间,平均值约为 0.56fm。考虑 到由于 ρ 对 ρ_0 的偏离会增加边界层的厚度,因此我们选择的 a 值应略小于这个平均值。 目前实验上对许多核都测定了均方根半径 Rm = $\sqrt{\langle r^2 \rangle}$ (数据取自 [12])。 由 ρ_0 所计

图 1

算的 Rm 值应与实验值基本相符. (ii) 根据 ρ₀ 计算的镜象核质量差应与实验值相符 [参 看第三节].

根据上述条件,我们选取 t = 0.3, a = 0.528 fm,这样,由 ρ_0 计算的 Rm 值如图 1. 所示。应用 ρ_1 计算的 Rm 值比由 ρ_0 计算的约大百分之一左右,不影响计算值与实验值的符合情况。

选定 a_1 , t 以后,我们根据实验测定的核质量来确定 a_1 , \cdots , a_6 六个参数。由于 a_2 和 a_5 两参量在核结合能的主要项 E_0 中不出现,它们的数值仅仅影响 ΔE 的值。因此对 a_2 和 a_5 的值即使作较大的变动,计算的能量变化也不大,可以通过对参数 a_1 , a_3 , a_4 , a_6 小的调 整加以补偿。为了初步确定参量,我们暂取

$$a_2 = \frac{1}{2} a_3, \quad a_5 = \frac{1}{2} a_6,$$

一今后将通过更可靠的途径来定这两个参数的值。作为对这种能量公式的鉴定,我们先在 这种假设下定其他四个参量,结果如下

 $a_1 = 16.1027 \text{ MeV}, \quad a_3 = 26.583 \text{ MeV},$

 $a_4 = 15.19 \text{ MeV}$, $a_6 = 14.62 \text{ MeV}$.

这时 a2 的值即为 13.3 MeV, 文献 [6] 中相应的参量为 13.7 MeV。用这一组参量, 计算所 得的核质量值, 如采用 Myers 和 Swiatecki 的对校正和壳校正^[6], 与实验符合的程度也与 他们的公式差不多.计算值与实验值的差别在 5MeV 以内, 大多数在 1 MeV 左右. 由于 这一组参数仅仅是粗定的,这里不详细讨论与实验值拟合的情况.

在定参量的过程中,也计算了核物质密度和电荷密度偏离参考密度的情况. 图 2 给出了两个典型的例子. 一个轻核, A = 48, Z = 24; 和一个重核, A = 208, Z = 82.

 $--- (\mathbf{\Delta} \rho_{\mathbf{0}} - \mathbf{\Delta} \rho_{\mathbf{0}} / \rho_{\mathbf{0}}); \quad ---- (\mathbf{\Delta} \rho_{\mathbf{0}} - \mathbf{\Delta} \rho_{\mathbf{0}} / \rho_{\mathbf{0}})$

从图上可以看出,在核的主要区域(r < R)密度偏离 ρo 在 6—12% 之间,因此用 Vo 来 代替 v 基本上是合理的,而弥散层确实由于这种偏离而稍有扩大。和中子与质子的平均 比值 Z/N 相比,²⁰⁸Pb 核边缘层的中子密度略有增大,这也是和实验结果定性符合的⁽¹³⁾。 单就质子密度看,在中心部分略有减少,这也和实验测得的电荷分布定性地相符⁽¹²⁾。

四、镜象核的质量差

如核力具有电荷对称性,则镜象核的质量差即由库仑能的差和质子中子的质量差给 出.因此,计算镜象核的质量差是对质量公式中库仑能一项的单独检验.镜象核都是轻 核,即使最重的镜象核,ΔE 也不过 1 MeV 左右,其差更可忽略.因此在计算镜象核的质 量差时,可取库仑能为

$$E_{c}(A, Z) = \frac{1}{2} e^{2} \frac{Z^{2}}{A^{2}} \iint \frac{\rho_{0}(1)o_{0}(2)}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} d\nu_{1} d\nu_{2} (1 - \alpha Z^{-\frac{2}{3}}).$$
(14)

对同位旋为T的镜象核,其质量差为

$$\Delta M = E_{\epsilon}\left(A, \frac{A}{2} + T\right) - E_{\epsilon}\left(A, \frac{A}{2} - T\right) - 1.564 T.$$
(15)

式中最后一项T的系数为中子与氢原子质量差的两倍,以 MeV 为单位. 图 3 画出了 A ≥

A	ک <i>M</i> _{MS} ^[6]	$\Delta M_{Z^{1/3}}^{[1+]}$	众 <i>M</i> ^[本文]	▲M _{実验^[13]}
15		2.58	2.539	2.752
17		2.87	2.916	2.762
19	u de la construcción de la constru	3.15	3.280	3.238
21	2.73	3.42	3.634	3.547
23	3.05	3.68	3.979	4.059
25	3.37	3.94	4.314	4.278
27	3.67	4.19	4.642	4.809
29	3.93	4.43	4.963	4.945
31	4.26	4.67	5.279	5.396
33	4.54	4.90	5.587	5.583
35	4.82	5.13	5.891	5.965
37	5.09	5.35	6.188	6.149
39	5.34	5.57	6.481	6.524
41	5.60	5.78	6.769	6.494
43	5.87	6:00	7.054	6.861
45	6.14	6.21	7.333	7.125
47	6.39	6.41	7.610	7.383
49	6.64	6.61	7.883	7.716
51	6.88	6.81	8.152	8.012
53	7.12	7.01	8.418	8.304
55	7.36	7.21	8.681	8.690

表1 镜象核的质量差 (T = 1/2)

表中数据以 MeV 为单位.

20 时, T = 1/2, 1, 3/2 的已知镜象核质量差理论值与实验值之比,从图上可以看到两者 之差在 4% 以内. 这表明我们选择的参量 a, t比较合理,同时计算库仑能应该考虑核的 电荷分布,为了比较几种模型计算的镜象核质量差。我们在表 1 中列出了 T = 1/2 时, $A \downarrow 15$ 到 55, 一共 21 对镜象核质量差的实验值,根据 Myers Swiatecki 小液滴模型计算 的质量差^[6],按 $E_e \propto Z^{5/3}$ 而计算的质量差[14]以及我们的计算结果.小液滴模型的库仑能 近似地考虑了核边界密度弥散的效应,也考虑了交换效应,但仍和实验值有较大的差别. 按 E_e 正比于 $Z^{5/3}$ 计算的质量值也和实验值有较大的系统差别,因此不能通过调整参量得 到改进。这一切似乎表明,计算库仑能一定要认真考虑核的电荷分布,采用简单的近似, 不能得到较精确的结果。

五、巨偶极共振

从连续介质模型看,核的巨多极共振是围绕平衡分布的核密度微小振动. 关于已有的理论可以参看[16]. 过去这方面理论的主要缺点在于: 1. 没有考虑核密度在边界层弥散的效应,这样就不能正确给出密度振荡的边界条件。 2. 忽略了核密度振荡和质子与中子相对振荡的耦合。3. 忽略了库仑场的影响。

理论结果与实验的符合情况也不很满意,因此这方面的理论还有进一步探讨的必要.

设 S₀ 和 S₄ 分别为质子和中子的位移矢量场。对于微小振动,质子和中子的速度分 别为

$$\boldsymbol{v}_{\mathrm{p}} = \frac{\partial \boldsymbol{S}_{\mathrm{p}}}{\partial T}; \quad \boldsymbol{v}_{\mathrm{n}} = \frac{\partial \boldsymbol{S}_{\mathrm{n}}}{\partial T},$$
 (16)

因此,总动能为

$$T = \frac{M}{2} \int \left[\boldsymbol{\rho}_{p} \left(\frac{\partial \boldsymbol{S}_{p}}{\partial T} \right)^{2} + \boldsymbol{\rho}_{n} \left(\frac{\partial \boldsymbol{S}_{n}}{\partial T} \right)^{2} \right] d\nu.$$
(17)

由位移 S, 及 S, 所引起的质子和中子密度的变化分别为

$$\delta \rho_{\rm p} = -\operatorname{div}(\rho_{\rm p} \boldsymbol{S}_{\rm p}), \quad \delta \rho_{\rm n} = -\operatorname{div}(\rho_{\rm n} \boldsymbol{S}_{\rm n}). \tag{18}$$

由能量泛函(1)可以求得在平衡点附近的微小振动的位能为

c

$$V = \int \left[(a_2 - \varphi a_5) (\delta \rho_n + \delta \rho_p)^2 + (a_3 - \varphi a_6) (\delta \rho_n - \delta \rho_p)^2 \right] \frac{dv}{\rho_0} + \frac{1}{2} e^2 \int \frac{\delta \rho_p(1) \delta \rho_p(2)}{|\mathbf{r}_1 - \mathbf{r}_2|} dv_1 dv_2,$$
(19)

式中 δρ, 及 δρ。可通过 (18) 以 S。及 S。表出。体系的郎格拉日 S 为

$$\mathscr{L} = \int (T - V) dT, \qquad (20)$$

引入

 $\boldsymbol{f}_{\mathrm{p}}=\rho_{\mathrm{p}}\boldsymbol{S}_{\mathrm{n}}, \quad \boldsymbol{f}_{\mathrm{n}}=\rho_{\mathrm{n}}\boldsymbol{S}_{\mathrm{n}},$

我们得到

$$T = \frac{M}{2} \int \left[\frac{1}{\rho_{\rm p}} \left(\frac{\partial f_{\rm p}}{\partial T} \right)^2 + \frac{1}{\rho_{\rm n}} \left(\frac{\partial f_{\rm n}}{\partial T} \right)^2 \right] d\nu,$$

$$V = \int \left[(a_2 - \varphi a_5) (\operatorname{div} f_{\rm p} + \operatorname{div} f_{\rm n})^2 + (a_3 - \varphi a_6) (\operatorname{div} f_{\rm p} - \operatorname{div} f_{\rm n})^2 \right] \frac{d\nu}{\rho_0}$$

$$+ \frac{c^2}{2} \iint \frac{\operatorname{div}_1 f_{\rm p}(1) \operatorname{div}_2 f_{\rm p}(2)}{|r_1 - r_2|} d\nu_1 d\nu_2.$$

将 \mathscr{L} 看成是 f_0 及 f_0 的泛函,则由 $\mathscr{S}\mathscr{L} = 0$,得到方程式

$$\frac{M}{2\rho_{p}} \cdot \frac{\partial^{2}}{\partial t^{2}} \mathbf{f}_{p} - \operatorname{grad} \left[\frac{(a_{2} - a_{5}\varphi)}{\rho_{0}} (\operatorname{div} \mathbf{f}_{p} + \operatorname{div} \mathbf{f}_{n}) \right] + \frac{(a_{3} - a_{6}\varphi)}{\rho_{0}} (\operatorname{div} \mathbf{f}_{p} - \operatorname{div} \mathbf{f}_{n}) - \frac{e^{2}}{2} \operatorname{grad} \int \frac{\operatorname{div}_{1} \mathbf{f}_{p}(1)}{|\mathbf{r} - \mathbf{r}_{1}|} dv_{1} = 0,$$

$$\frac{M}{2\rho_{n}} \cdot \frac{\partial^{2}}{\partial t^{2}} \mathbf{f}_{n} - \operatorname{grad} \left[\frac{(a_{2} - a_{5}\varphi)}{\rho_{0}} (\operatorname{div} \mathbf{f}_{p} + \operatorname{div} \mathbf{f}_{n}) - \frac{(a_{3} - a_{6}\varphi)}{\rho_{0}} (\operatorname{div} \mathbf{f}_{p} - \operatorname{div} \mathbf{f}_{n}) \right] = 0,$$

$$(21)$$

Ŷ

. .

$$\frac{1}{\rho_0} (a_2 - \varphi a_5) (\operatorname{div} \mathbf{f}_{\mathrm{p}} + \operatorname{div} \mathbf{f}_{\mathrm{n}}) = F e^{i\omega t},$$

$$\frac{1}{\rho_0} (a_3 - \varphi a_6) (\operatorname{div} \mathbf{f}_{\mathrm{p}} - \operatorname{div} \mathbf{f}_{\mathrm{n}}) = G e^{i\omega t},$$
(22)

对式 (21) 取散度,并以式 (22) 代入,经简化得

ρ

$$\frac{M}{2} \frac{\rho_0 \omega^2}{a_2 - a_5 \varphi} F + \operatorname{div} \left[\rho \operatorname{grad} F + \left(\rho_p - \rho_n \right) \operatorname{grad} G \right]
+ \frac{e^2}{2} \operatorname{div} \rho_p \operatorname{grad} \int \frac{H(1)}{|\mathbf{r} - \mathbf{r}_1|} dv_1 = 0,$$

$$\frac{M}{2} \frac{\rho_0 \omega^2}{a_3 - a_6 \varphi} G + \operatorname{div} \left[\left(\rho_p - \rho_n \right) \operatorname{grad} F + \rho \operatorname{grad} G \right]
+ \frac{e^2}{2} \operatorname{div} \rho_p \operatorname{grad} \int \frac{H(1)}{|\mathbf{r} - \mathbf{r}_1|} dv_1 = 0,$$
(23)

$$H = \frac{\rho_0}{2} \left[\frac{F}{a_2 - a_5 \varphi} + \frac{G}{a_3 - a_6 \varphi} \right].$$
 (24)

上式中 ω 即振动的特征频率,由条件 F,G 在空间各点有限(包括无穷远点)所决定. $\rho_0 F$ 和 $\rho_0 G$ 分别为密度振动及质子中子密度相对振动的振幅.从上式可以看 $a_2 - a_5 \varphi$ 和 $a_3 - a_6 \varphi$ 分别为密度振动及质子中子密度相对振动的振幅.从上式可以看 出,两种振动是耦合的,边缘上的密度变化对振动的本征频率有重要的影响,而且库仑能 对振动的影响一般不能忽略.详细地解上述方程和讨论它的解的工作在进行中,这里仅 仅讨论一下对于巨偶极共振式(23)的近似解.

为了近似计算,我们取 $\rho \Rightarrow \rho_0$, $\rho_p \Rightarrow \frac{Z}{A} \rho_0$, $\rho_n = \frac{N}{A} \rho_0$ 并且忽略在库仑能项中关于密度微分的项,于是我们得到

$$\frac{M}{2} \frac{\rho_0 \omega^2}{a_2 - a_5 \varphi} F + \operatorname{div} \left[\rho_0 \operatorname{grad} F - I \rho_0 \operatorname{grad} G \right] - \pi e^2 \frac{Z}{A} \rho_0^2 \left(\frac{F}{a_2 - a_5 \varphi} + \frac{G}{a_3 - a_6 \varphi} \right) = 0,$$

$$\frac{M}{2} \frac{\rho_0 \omega^2}{a_3 - a_6 \varphi} G + \operatorname{div} \left[-I \rho_0 \operatorname{grad} F + \rho_0 \operatorname{grad} G \right] - \pi e^2 \frac{Z}{A} \rho_0^2 \left(\frac{F}{a_2 - a_5 \varphi} + \frac{G}{a_3 - a_6 \varphi} \right) = 0,$$
(25)

对于巨偶极共振,我们关心的只是G的解,在上式中消去包含F的梯度项,得到

$$\frac{\rho_0 G}{2(a_3 - a_6 \varphi)} \left[\frac{M \omega^2}{1 - l^2} - \pi e^2 \rho_0 \right] + \frac{\rho_0 F}{2(a_2 - a_5 \varphi)} \left[\frac{M \omega^2 l}{1 - l^2} - \pi e^2 \rho_0 \right] + \operatorname{div} \rho_0 \operatorname{grad} G = 0.$$
(26)

对于 F,我们也可得到一个类似的微分方程。从上式可以看出库仑能的影响和特征频率的大小有关,而耦合项的大小还和 $I = \frac{N-Z}{A}$ 有关。对于重核巨偶极共振,在 $r \ll R$ 的区域,库仑项的影响可达 ω^2 值的 20%,较轻核 ($A \sim 90$)达 10%。 而耦合项中的两项,在 $r \ll R$ 的区域近似地相互消去。因此对于巨偶极共振, $G \approx P$ 的耦合可以忽略。这样关于G的近似方程可以写成

$$\frac{\rho_0 G}{2(a_3 - a_6 \varphi)} \left[\frac{M \omega^2}{1 - I^2} - \pi e^2 \rho_0 \right] + \operatorname{div} \rho_0 \operatorname{grad} G = 0.$$
 (27)

对一些具体的核,解上述本征方程,可以算巨偶极共振能,与实验比较如表2

核素	⁹⁰ Zr	¹²⁰ Sn	140Gd	208Pb
 计算值 (MeV)	16.3	14.9	14.3	13.3
实验值(MeV)	16.8	15.4	14.7	13.5 [17]

表 2 巨偶极共振能

估计这种计算的误差在 10% 左右。

六、结 束 语

上面的讨论表明,考虑核物质和电荷密度的变化是改进液滴模型的一个重要方向.这 个工作目前仅仅处在开始阶段,不仅需要通过广泛的应用来检验这模型,还需要通过应用 来进一步确定参量的数值。作为结束,下面简单地列举一些可能的应用.1.核巨多极共 振能量的计算.可以通过这工作来检验我们的模型,并且确定参量 a₂, a₅的值.2.同位 旋相似态的库仑能差的计算.进一步检验我们的库仑能项和密度对 ρ₀的偏离对库仑能 的影响.3.和壳校正项结合.计算裂变的位能曲面,可以进一步调整参量.由于有极化 效应,在形变较大时,可能和液滴模型有较大的差别.4.重离子相互作用势的计算.5.高 自旋态的形变计算.6.远离β稳定线核质量及超重核质量的计算.这项工作,可以在参 量进一步确定后进行,以便与已有的模型计算的结果相比较.

所有上述问题,过去都曾用液滴模型进行过计算,引入密度分布后,看来会有变化.这些问题,以及还没有提到的和难度较大的问题如形变动力学问题,都有待于进一步分析研究,我们的报告,仅仅是这问题的初步探讨.

参考文献

- [1] A. 玻尔, B. R. 莫特逊, 《原子核结构》,卷1,第二章第一节,1969年 科学出版社出版.
- [2] A. de Shalit, H. Feshbach, "Theoretical Nuclear Physics Vol. 1, Nuclear Structure", p. 188, 1974, John Wiley and Sons, Inc. New York.
- [3] M. A. Preston, R. K. Bhaduri: "Structure of the Nucleus", p. 99, 1975, Addison-Wesley Pub. Co. Inc. Reading, Massachusetts.
- [4] W. J. Swiatecki in "Nuclear Reactions Induced by Heavy Ions", p. 729, 1970. North Holland Pub. Co. Amsterdam-London.
- [5] W. D. Myers and W. J. Swiatecki, Ann. Phys., (N. Y.) 55(1969), 395.
- [6] W. D. Myers, "Droplet Model of Atomic Nuclei", 1977, IFI/Plenum Data Company.
- [7] W. D. Myers and W. J. Swiatecki, in Proc. of the Lysekil Symposium (1966), Ark. Fys., 36 (1967), 343.
- [8] 参见 D. A. Bromley in Proc. of the Int. Conf. on Nuclear Physics, Munich 1973, 2, 35, North Hoiland Pub, Co. Amsterdam-London.
- [9] K. A. Brueckner et al., Phys. Rev., C4(1971), 732 及所引文献.
- [10] H. Stock, Nucl. Phys., A237(1975), 365.
- [11] 见文献[1], Vol. 1, 英文版 152 页.
- [12] R. O. Barrett, D. F. Jackson, "Nuclear Sizes and Structure", 第6章, 1977, Clarendon Press. Oxford.
- [13] J. W. Negele et al., Comments Nucl. Phys., 8(1979), 135.
- [14] 曾谨言,物理学报, 24(1975), 151; Nucl. Phys., A334(1980), 470.
- [15] V. S. Shirley, C. M. Lederer, "Nuclear Wallet Cards". U. S. Nuclear Data Network 1979.
- [16] 见文献 [1] Vol. 2. p. 666-671.
- [17] B. L. Berman, S. C. Fultz, Rev. Mod. Phys., 47(1975), 713.

A CONTINUOUS MEDIUM MODEL OF ATOMIC NUCLEI

HU JI-MIN

(Peking University)

ABSTRACT

In this model, the nucleus is consistered as a continuous medium with variable nucleon densities, ρ_{p} and ρ_{n} . The energy of the system is expressed by the formula:

$$E[\rho_{n},\rho_{p}] = \int \left\{ \left[-a_{1} + a_{2} \frac{(\rho - \rho_{0})^{2}}{\rho_{0}^{2}} + a_{3} \frac{(\rho_{n} - \rho_{p})^{2}}{\rho_{0}^{2}} \right] \rho_{0} + \left[a_{4} - a_{5} \frac{(\rho - \rho_{0})^{2}}{\rho_{0}^{2}} - a_{6} \frac{(\rho_{n} - \rho_{p})^{2}}{\rho_{0}^{2}} \right] |a \ \text{grad} \ \rho_{0} | \right\} dv + \frac{e^{2}}{2} \iint \frac{\rho_{p}(1) \ \rho_{p}(2)}{|r_{1} - r_{2}|} dv_{1} dv_{2} (1 - 0.7636z^{-2/3}),$$

where $\rho_0 = \frac{t}{4\pi a^3} \left[1 + \exp\left(\frac{r-R}{a}\right) \right]^{-1}$ is a reference density which is assumed to be

the average density of an ideal nucleus with N=Z and without coulomb interactions. The binding energy and the density distributions of a nucleus were determined from the condition $\delta E=0$.

The parameters were determined by fitting the nuclear masses and the general behavior of unclear charge distributions. Their preliminary values are: a=0.528 fm, t=0.3, $a_1=16.1027$ MeV, $a_3=26.583$ MeV, $a_4=15.19$ MeV, $a_6=14.62$ MeY, $a_3=1/2$ a_4 , $a_5=1/2$ a_6 . With this set of parameters, together with Myers and Swiatecki's formulae for shell corrections and pairing energies, the experimental nuclear masses can be reproduced within 5 MeV and the nuclear mean ware root radius within a few percent. These constants probably could further be improved by fitting other nuclear properties.

With this new mass formula, the empirical mass difference between mirror nuclei can be reproduced within 4% (for $A \ge 20$). This is a substantial improvement over the liquid drop model. A theory of nuclear giant multipole resonance was developed by this model. Preliminary calculation on the giant dipole resonance yields rather promising results.