Vol. 2, No. 5

September, 1978

海拔 3220 米动量大于 4 GeV/c 的 μ 子垂直积分动量谱

荆贵茹 霍安祥 袁余奎 王立安 李延国 粟登吉 孟祥承 姚伟忠 周寅藻 冯少华 王丽辉 (中国科学院高能物理研究所)

摘 要

我们在云南海拔 3220 米高山上,利用 G-M 计数管磁谱仪,测量了动量大于 4 GeV/c 的宇宙线 μ 子垂直积分动量谱。 实验给出的谱可用一指数函数表示: $I(>p) = Q(p+4)^{-1.86\pm0.06} (cm^{-2} \cdot sr^{-1} \cdot s^{-1}), 其中动量 P 以 GeV/c 为单位, Q 为$ $常数。同时测量了动量在 4--23 GeV/c 范围 <math>\mu$ 子的荷电比为 $\frac{N_{\mu}+}{N_{\mu}-}=1.26\pm0.11$. 另外对本谱仪的动量误差问题作了讨论和计算。

一、引 言

我们于 1976 年在云南站安装了一套自动化装置,用以改善云室的选择系统,为检验 仪器的性能,首先进行了μ子动量谱的测量,这为进一步研究宇宙线原初谱,高能核作用 机制及 π,K 衰变提供了数据.这个实验结果还是初步的.

二、实验装置

我们在云南站海拔 3220 米高山上,安装了一架 G-M 计数管磁谱仪,如图 1 所示.

A、B、C、D分别由直径为 3.3 cm 的 G-M 计数管紧密排列而成. A、B 排各有 4 根计 数管,面积为(3.3 × 4 × 27) cm². C、D 排各有 56 根管,面积为(3.3 × 56×27) cm². B、 C 间有磁云室和磁场,用以测量带电粒子的动量. C、D 间有一多板室,用以辨别粒子,室 内有 11 块 1.8 cm 厚的铜板和 2 块 1.8 cm 厚的铁板. A、B、C、D 四排计数管用电子学线 路连接,这样带电粒子经过磁谱仪的径迹可由发光二极管显示,并有自动记录系统记录.

实验选择单根 μ 子,当 G-M 计数管列 A = 1, B = 1, C = 1, D = 1 和 $|2(n_B - n_A) - (n_D - n_C)| < 8$ 时,由自动记录系统记下带电粒子经过 A、B、C、D 第几根管子的序

418

 $\begin{cases} Bdl = 1.46 \times 10^6 \text{ gauss} \cdot \text{cm.} \end{cases}$ 号 n_A、n_B、n_C、n_D. 仪器的死时间 16 秒. 可选到的最大 天顶角 7°.

0

图 2 带电粒子经磁谱仪所走的轨迹 δ1:带电粒子人射方向与 y 方向夹角; δ2:带 电粒子出射方向与y方向夹角; a、b、c、d 分别 为带电粒子通过 A, B, C, D 排的 X 方向坐标

三、动量计算

1. 动量的计算

单电荷粒子垂直通过磁场H时,其动量

 $p = 300H\rho$,这里, p表示粒子动量,单位 eV/c, H为磁场强度,单位 gauss, ρ 为曲率半径, 单位 cm.

由圆半径
$$\rho$$
, 圆心角 α 及圆弧 i 关系知: $\dot{\rho} = \frac{di}{d\alpha}$,
 $p \int d\alpha = 300 \int H di$. (1)

带电粒子经过本磁谱仪的轨迹如图 2 所示。

A、B间和 C、D间没有磁场.磁场在 B、C间,磁场方向与坐标 z 方向相同,根据磁 场的分布, $|H\hat{dl} = 1.46 \times 10^6$ gauss · cm. 根据公式(1)易证出:

$$p = 4.38 \times 10^{8} / (\delta'_{3} + \delta'_{1}), \qquad (2)$$
$$l_{1} = \frac{1}{2} l_{3} = 107 \text{ cm}$$

$$\delta'_3 + \delta'_1 = \frac{2(b-a) - (d-c)}{214} \tag{3}$$

当带电粒子入射方向与y方向相反时, $\delta_1 + \delta_1$ 大于零为负粒子,小于零为正粒子。 将(3)代人(2)得:

ナこ

$$p = \frac{9.35 \times 10^{10}}{2(b-a) - (d-c)} \,(\text{eV/c}). \tag{4}$$

实验记录到的是粒子通过 A、B、C、D 排第几根管子 nA、nB、nc、nD, 所以

$$p = \frac{28.3}{2(n_B - n_A) - (n_D - n_C)} (\text{GeV/c}).$$
(5)

2. 动量误差

动量测量的系统误差经过校正基本上可以忽略。

动量测量误差主要来源于磁谱仪的空间分辨本领.由动量公式可知测量出的 $2(n_B - n_A) - (n_D - n_C)$ 一定是包括零的整数,但由于计数管的直径为 3.3 厘米,因此当 $2(n_B - n_A) - (n_D - n_C)$ 为一固定的整数时, $h\left(= \frac{1}{3.3} [2(b - a) - (d - c)] \right)$ 可以有很多个值,每一个 h 值都以一定的几率出现.即是对 $2(n_B - n_A) - (n_D - n_C)$ 为一个固定的表观值,h 有一定的分布.

为了得到这个分布,我们假定流强与动量无关,与天顶角无关. 假定动量 p,天顶角 θ 和坐标 a 是均匀分布. 利用电子计算机和概率论方法,做出 $2(n_B - n_A) - (n_D - n_C)$ 为不同表观值时的 h 的分布.

在表观值 $2(n_B - n_A) - (n_D - n_c) = 0$ 时,允许通过 h_i 的数目为 N_i ,这样 h_i 出现的几率就是 $N_i / \sum_{j=1}^{n} N_j$,几率密度为 $N_i / \sum_{j=1}^{n} N_j \Delta h$.做出 h的分布见图 3,几率密度函数用 $f(h - \bar{h})$ 表示.可以看出 h的分布是对称分布,平均值 $\bar{h} = 0$,均方差 $\sigma^2 = 0.77$. 对 $2(n_B - n_A) - (n_D - n_c) \ge 0$ 的情况, h的分布形式与 $2(n_B - n_A) - (n_D - n_c)$

 $\sqrt{2(n_B - n_A)} - (n_D - n_C) = 0$ 的情况,n = 0 所有形式与 $2(n_B - n_A) - (n_D - n_C)$ = 0 时的情形相同, $\bar{h} = 2(n_B - n_A) - (n_D - n_C)$, $\sigma^2 = 0.77$.

考虑到流强和 h 的关系,我们从实验算出微分谱 m(p)dp,由于 p 与 h 有关,由此就 可得到 m(h) 和 h 的关系,见图 4.

这样在 $2(n_B - n_A) - (n_D - n_C)$ 为一定表观值的情况下, h 的真实分布几率为:

$$L(h)\Delta h = \frac{m(h)f(h-h)}{\sum_{j=1}^{n} m(h_j)f(h_j-\bar{h})}.$$

L(h)△h 极大值所对应的 h 为最可几值,利用 h 和 p 的关系求出动量最可几值的 置 信 度 为 70% 的置信区间,见表 1.

实验测到	真实的 [2(b - a)	-(d-c)]/3.3=h	真实动量 ?		
$\frac{\left[2(n_B-n_A)-(n_D-n_C)\right]}{\left(n_D-n_C\right)}$	最可几值	置信度 70% 的置信区	最可几值 (GeV/c)	置信度为 70% 的 置信区(GeV/c)	
0	±0.75	±0.5	± 37.5	22.5—112 -22.5—-112	
1	1.25	±0.8	22.4	13.7-62.4	
2	2	±0.8	14.1	10.0-23.4	
3	3	±0.8	9.4	7.4-12.8	
4	4	±0.8	7.0	5.8-8.7	
5	5	±0.8	5.6	4.8-6.7	
6	6	±0.8	4.6	4.1-5.4	
7	7	±0.8	4.0	3.6-4.5	

表 1 $|2(n_B - n_A) - (n_D - n_C)|$ 和真实动量 p 的关系

四、实验结果

1976 年 9 月初,我们开始测量 µ子动量谱,收集了 µ子数据,收到了 1044 个满足选择条件的带电粒子事例,共用了有效时间 t = 322832 秒.数据见表 2.

$ 2(n_B - n_A) - (n_D - n_C) $	7	6	5	4	3	2	1	0
正粒子数	108	90	99	73	71	81	46	
负 杠 子数	59	74	76	73	71	59	32	32

表2 实验数据

本实验选择的是宇宙线中单根带电粒子 (*A* = 1, *B* = 1, *C* = 1, *D* = 1). 选择的 带电粒子动量大于 4 GeV/c, 对于这样高的动量, 电子是不能被选中的, 因为电子经过多 板室就要在多板室中产生电磁级联, 仪器不能被触发. 仪器能选上的带电粒子主要是 *µ*子, 其次是少数的质子和 *π* 介子. 我们在计算 *µ*子流强时要扣除质子和 *π* 介子.

质子和 π 介子成分的扣除,根据质子和 π 介子在多板室是否发生了核作用,选上的质子和 π 介子绝大多数是经过多板室不发生核作用的,根据 $I = I_0 e^{-x/t}$,利用海拔 3220 米 宇宙线中质子动量谱⁽¹⁾,把质子和 π 介子成分扣除.

经过扣除,我们得到了μ子数 N[']_μ,这比进入仪器的μ子少.一方面因为仪器有一定 的接收效率 η;另一方面因为μ子进入多板室要与物质发生电磁作用.这主要是μ子在 物质中发生打击过程

$$\phi_{\pi}(E, E') = \frac{2 m_c c^2}{\beta^2} \frac{dE'}{(E')^2} \left[1 - \beta^2 \frac{E'}{E'_m} + \frac{1}{2} \left(\frac{E'}{E + mc^2} \right)^2 \right] \text{cm}^2 \cdot g^{-1/2}$$

打击出的电子在多板室里产生电磁级联,当级联产生的次级电子使仪器不工作,这样的 μ子就损失了.为此我们对不同动量的 μ子在多板室的板中逐一计算了使仪器不工作的 几率,再求出 μ子因电磁作用选择不上的几率 P'. μ子数 N_μ等于 N'_μ/η(1 – P')^[3].

仪器的几何因子 A' 与动量有关, μ 子流强 $I = N_{\mu}/t \cdot A'$, 计算结果见表 3.

p(GeV/c)	正、负粒子数(个)	N'µ (个)	(1 - P')	$A't(cm^2 \cdot sr \cdot s)$	N _µ (个)	
4.0	167	164	0.927	1032901	281	
4.6	164	162	0.923	1044378	279	
5.6	175	174	0.918	1055855	301	
7.0	146	145	0.91	1078807	253	
9.4	142	141	0.904	1096023	248	
14.1	140	140	0.898	1118976	248	
22.4	78	78	0.895	1130453	139	
37.5	32	32	0.892	1147668	57	

表 3 海拔 3220 米的 # 子动量及其数目

在云南站海拔 3220 米高度,动量大于 4 GeV/c 的 # 子积分动量谱见图 5.

图 5 海拔 3220 米 μ 子垂直积分动量谱

这谱可用一指数函数表示:

 $I(>p) = Q(p + 4)^{-1.86+0.06} (cm^{-2} \cdot sr^{-1} \cdot s^{-1}),$ p 单位 GeV/c, Q 为常数.

动量在 4-23 GeV/c 范围的 # 子的荷电比:

$$\frac{N_{\mu^+}}{N_{\mu^-}} = 1.26 \pm 0.11.$$

我们的实验结果在误差范围内与其他组的结果一致^[1].

参考资料

- [1] S. Hayakawa, "Cosmic Ray Physics", (John Wiley & Sons, H. Y., 1969), 335-374.
- [2] B. Rossi, "High Energy Particles". (Prentice-Hall, N. Y. 1952), 16.
- [3] 丁林塏、李惕碚、沈长铨、陈映宣、蔡邦鉴, 物理, 3(1973), 115.

THE VERTICAL INTEGRATED MOMENTUM SPECTRUM OF THE MUON WITH MOMENTUM LARGER THAN 4 GeV/c AT 3220m ABOVE SEA-LEVEL

JING GUI-RU HUO AN-XIANG YAN YU-KUI WANG LI-AN LI YAN-GUO SU DENG-JI MENG XIANG-CHENG YAO WEI-ZHONG ZHOU YIN-ZAO F'ENG SHAO-HUA WANG LI-HUI (Institute of High Energy Physics, Academia Sinica)

ABSTRACT

At an altitude of 3220 meters above sea level in Yunnan Province, we measured, by using a G-M counter-magnetic spectrometer, the vertical integrated momentum spectrum of the cosmic muon with momentum larger than 4 GeV/c. The spectrum obtained from this experiment is expressed by a power function in the form of $I(>p)=Q \ (p+4)^{-1.86\pm0.06} \ (\text{cm}^{-2}\cdot\text{sr}^{-1}\cdot\text{s}^{-1})$, where p is in GeV/c and Q is a constant. We also measured the charge ratio of muon in the 4–23 GeV/c momentum range. The result is $N_{\mu^+}/N_{\mu^-} = 1.26 \pm 0.11$. The error in the momentum measurement with spectrometer has been discussed and calculated.